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Transient signal detection is studied first, within a framework that 
expresses transient signals as linear combinations of time-frequency-shifted, 
one-sided exponential window functions.  For the case where signal components 
have known locations in the time-frequency plane, it is shown that a general- 
ized likelihood ratio test (GLRT) detector based on the oversampled Gabor 
transform is more robust to mismatch than GLRT detectors based on the 
critically sampled Gabor transform and critically sampled STFT.  For the 
case where signal component locations are not precisely known, it is shown 
that, for a given transform, a GLRT detector which does not make assumptions 
about component location information is more robust to component location 
mismatch than a GLRT detector which does make those assumptions. 

When the oversampled Gabor transform is used for data reduction, one of 
its main drawbacks is its lack of stability:  small variations in a signal 
can cause large variations in the magnitudes of the Gabor coefficients. 
Thus, several modifications designed to improve the stability of the over- 
sampled Gabor transform has been widely used, and the transform is stable in 
this form.  However, it is shown here that there are several serious problems 
with the expanded form of the oversampled Gabor transform that make it 
unsuitable for use in transient signal detection. 

Next, the oversampled Gabor transform is applied to a simple transient 
signal classification problem.  Two GLRT-based classifiers based on the 
oversampled Gabor transform are shown to be largely ineffective.  Because of 
this, a classifier based on the adaptive Gabor transform is defined, and it is 
shown that this classifier provides performance far superior to that of the 
GLRT-based classifiers.  Finally, the optimal detector-classifier combination 
for the problems studied in this dissertation is proposed. 
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Chapter 1 

Introduction 

1.1     Motivation 

This dissertation examines the use of linear time-frequency representations in the 
detection and classification of transient signals. Time-frequency representations 
(TFRs) combine the traditional elements of time-domain analysis and frequency- 
domain analysis to form a joint time-frequency characterization of a given signal. 
For stationary signals whose spectral contents remain essentially constant over time, 
standard Fourier analysis is sufficient and the additional information provided by 
TFRs is unnecessary. However, many important signal processing applications to- 
day — in areas as diverse as medicine, geophysics, defense, and music — involve 
nonstationary signals, signals whose spectral contents vary with time. In analyz- 
ing these types of signals, it is necessary to determine which frequency components 
occurred when, and this is what TFRs are designed to do. 

Transient signals are a commonly encountered class of nonstationary signals. A 
transient signal is simply defined as a nonstationary signal whose duration is short 
compared to the overall observation time [FP89]. Optimal detection of a known 
transient signal is accomplished by means of the familiar matched filter. When the 
transient signal is not completely known (which is almost always the case), it is 
necessary to resort to maximum likelihood or generalized likelihood techniques. In 
this case, it is advantageous to transform the received data before the detection 
process begins so that the detector is based not on a very large number of data 
samples but on a smaller number of transform coefficients. This makes the detection 
process both simpler and faster. Clearly, a given transform will only be effective in a 
transient signal detection scheme if it represents the information content of the signal 
accurately as well as simply. For this reason, the Fourier transform is not effective 
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when applied to transient signal detection problems, because it cannot distinguish 
signal components that have the same frequency but occur at different times. 

The greater part of this dissertation focuses on the application of a particular 
linear TFR, the Gabor transform, to transient signal detection and classification 
schemes. By nature, the Gabor transform is designed to represent the information 
content of a given signal with a relatively small number of coefficients. Furthermore, 
when the shapes of the desired signal components are known, or known up to a set 
of parameters, the Gabor transform coefficients represent the information content 
of the signal quite accurately as well. Thus, the Gabor transform is particularly 

well-suited for use in transient signal detection and classification problems. 

1.2    Overview 

The body of this dissertation is organized into five chapters as summarized below. 

Chapter 2 gives some necessary background material on TFRs in general and on 
the Gabor transform in particular. In the general overview of TFRs, much attention 
is devoted to the distinction between linear and quadratic TFRs, and it is explained 
why quadratic TFRs such as the Wigner distribution are not suitable for use in 
transient detection problems. In the discussion on the Gabor transform, the emphasis 
is placed on the various means of calculating the Gabor transform coefficients and 
on the advantages and drawbacks to each method. Also, the distinction is made 
between Gabor transform coefficients that are critically sampled and oversampled. 

Chapter 3 applies the Gabor transform to a class of transient signal detection 
problems. The first part of the chapter makes use of a framework first developed by 
Friedlander and Porat [FP89, PF92] which assumes that the desired signal compo- 
nents have known locations in the time-frequency plane and known waveform shapes, 
but unknown magnitudes. Within this framework, the performance of a GLRT1 de- 
tector based on the oversampled Gabor transform is compared to the performances of 
four detectors based on critically sampled linear transforms. The main performance 
criterion is robustness to signal mismatch, i.e., the ability of a detector to maintain 
its effectiveness when the actual parameter values of the signal components vary from 
the assumed parameter values. It is shown that the oversampled Gabor transform 
detector is most robust among all the detectors to mismatches in both location and 
waveform shape. 

In the second part of Chapter 3, a GLRT detector based on the oversampled 
Gabor transform is derived for the case where the locations of the desired signal 

1 Generalized likelihood ratio test 
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components are not assumed to be known. The performance of this unknown-location 
(UL) detector is then compared to the performance of the corresponding known- 
location (KL) GLRT detector derived in the first part of the chapter. It is shown 
that, as expected, the UL detector is more robust to location mismatch than the KL 

detector. 

Chapter 4 explores various methods for improving upon the main weaknesses 
of the oversampled Gabor transform, its lack of coefficient stability (meaning that 
the coefficient magnitudes show large variations) in the presence of noise or signal 
mismatch. First, an explanation is given as to why the GLRT detector based on the 
oversampled Gabor transform proved to be robust to signal mismatch in Chapter 3 
even though the oversampled Gabor transform coefficients themselves are unstable 
in the presence of mismatch. Then, several methods of counteracting this instability 
are studied, including rank reduction (via singular value decomposition), regulariza- 
tion, solutions with energy constraints, and the principal components method. The 
last part of Chapter 4 examines the calculation of the oversampled Gabor transform 
under a different set of assumptions, first proposed by Wexler and Raz [WR90]. It 
is shown that the Wexler-Raz assumptions greatly improve the coefficient stability 
of the oversampled Gabor transform but greatly increase its computational com- 
plexity as well. Among other reasons, the latter makes the Wexler-Raz version of 
the oversampled Gabor transform unsuitable for use in transient signal detection 

problems. 

Chapter 5 investigates a slightly different problem, that of transient signal clas- 
sification. Here, it is assumed that a transient signal has been detected, but the 
problem is to determine what type of signal it is. A simple classification problem is 
proposed within the Friedlander-Porat framework, and a GLRT detector based on 
the oversampled Gabor transform is derived for this problem. However, it is shown 
that the GLRT detector is essentially useless for this problem, and an alternate 
detector (still based on the oversampled Gabor transform) is proposed, with much 
better results. Finally, a recently proposed method of calculating the Gabor trans- 
form coefficients adaptively, called matching pursuit, is applied to the classification 
problem, and it is shown through Monte Carlo simulations that a detector based on 
this method far outperforms either of the first two detectors. The implications of 
this are examined and the optimal detector-classifier combination is proposed. 

Finally, Chapter 6 summarizes the conclusions drawn from Chapters 3 through 5 
and suggests possible further avenues of research. The latter includes in particular 
a discussion of how to extend the results of this dissertation involving the Gabor 
transform to research problems that involve another recently popular linear TFR, 
the wavelet transform. 



Chapter 2 

Preliminaries 

This chapter is intended to review the background material necessary to understand 
the problems and results of Chapters 3 through 5. The first half of the chapter gives 
a general overview of time-frequency representations (TFRs), while the second half 
presents an overview of the Gabor transform, the linear TFR that will be the primary 
focus of this dissertation. The respective overviews are by no means comprehensive; 
instead, they focus on material relevant to the problems examined in the subsequent 

chapters. 

2.1     Overview of Time-Frequency Representations 

Hlawatsch and Boudreaux-Bartels aptly describe the general concept and purpose of 
time-frequency representations (TFRs): 

Time-frequency representations (TFRs) of signals map a one-dimensional 
signal of time, x(t), into a two-dimensional function of time and fre- 
quency, Tx(t,f). Most TFRs are "time-varying spectral representations" 
which are similar conceptually to a musical score with time running along 
one axis and frequency along the other axis. The values of the TFR 
surface above the time-frequency plane give an indication as to which 
spectral components are present at which times. [HBB92] 

Two main classes of TFRs have emerged in the literature: quadratic TFRs and 
linear TFRs. The differences between the two classes begin with their definitions. A 
linear TFR Lx(t, f) is calculated as a function of the first-order term x(t) (the signal 
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itself), and it obeys the superposition principle for a linear combination of signals 

ciXi(t) + c2x2(t): 

LClXl+C2X2(tJ) = ClLXl(t,f) + c2LX2(t,f). (2.1) 

A quadratic TFR Qx(t,f) is calculated as a function of the second-order term 
x(t)x*(t — T), T E 11, and it does not obey the superposition principle for a lin- 
ear combination ciSi(t) + c2x2(t): 

QClx1+C2x2(i, /) = \ci\2QXl(t, /) + M2Qx2(i, /) + clC*2QXlX2(t, f) + c2c{QX2Xl(t, /), 
(2.2) 

where the latter two "crossterms" define Q(t, f) as a function of a cross-correlation 
X!(t)xl(t - T) instead of an energy1 x(t)x*(t - r). This fundamental difference in 

definitions between quadratic and linear TFRs results in other differences that will 
become apparent below as specific examples of each class are discussed. 

2.1.1     Quadratic TFRs: properties and examples 

One reason for defining TFRs as quadratic functions of the signal (instead of linear) 
is that one would like a TFR to represent the energy distribution of the signal in the 
time-frequency plane. As such, the two-dimensional TFR should be related to the 
one-dimensional energy distributions, the instantaneous power px(t) = \x(t)\2 and 
the spectral energy density Px(f) = |-X"(/)|2 (where X(f) is the Fourier transform of 
x(t)). Ideally, one should be able to obtain these "marginal" densities of one variable 
by integrating the TFR over the other variable2: 

[Q*(t,f)df   =   Px(t) (2.3) 

JtQ.(t,f)*f   =   P*U) (2-4) 

JjQx(t,f)dtdf   =   E, (2.5) 

where E = ftPx{t) dt = ff Px(f)df is the energy of the signal. A TFR that satisfies 
the above three relations is said to "satisfy the marginals" [Coh89]. 

The Wigner distribution (WD) is a widely-used quadratic TFR that satisfies 
the marginals and has numerous other desirable properties [CM80, HBB92, Coh89]. 

■"•Here, the terms correlation and energy are used loosely: one needs to integrate these terms over 
time t to obtain the quantities normally denned as "correlation" and "energy." 

2 Unless otherwise noted, all integrals and summations are assumed to range from — oo to oo. 
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The Wigner distribution Wx(t, f) of a signal x(t) is defined as 

WDx(t, f) = l x(t + !)*•(* - ^)e-*"*dT. (2.6) 

The "cross-Wigner" distribution Wx,y(t, f) between two signals x(t) and y(t) is de- 
fined similarly as 

WDxy(t, f) = I x(t + T-)y\t - ^e-^-dr. (2.7) 

Using the relation in equation (2.2), it is easily shown that 

WDx+y(t, f) = WDx(t, f) + WDy(t, f) + 2Re{WDxy(t, /)}, 

where the last term is the crossterm and the first two terms in the sum are called 
autoterms. 

Among the many favorable properties of the Wigner distribution is that it pro- 
vides maximal autoterm concentration (i.e., maximal time-frequency localization of 
the autoterms) among those quadratic TFRs that satisfy the marginals [JP92]. Un- 
fortunately, the crossterms in the Wigner distribution are substantial and almost al- 
ways interfere with the interpretation of the Wigner distribution; in fact, crossterms 
are sometimes called "interference terms." To illustrate the effects of crossterms, 
consider Figure 2.1, which shows the Wigner distribution of the sum of two sinu- 
soids, ej2lrt + e^18,rt. Note that, in addition to the well-concentrated autoterms at 
/ = 1Hz and / = 9Hz, there is a substantial crossterm at / = 4.5i7z. In a simple 
example such as this, one can easily distinguish the autoterms and the crossterm, but 
the effects of crossterms are much worse when the analysis involves more intricate 
signals or noise. 

In fact, the Wigner distribution of any multicomponent signal3 contains notice- 
able crossterms. Consequently, there are several related quadratic TFRs that at- 
tempt to smooth the crossterms of the Wigner distribution while maintaining a 
good number of the WD's favorable properties. These include: 

• the smoothed pseudo-Wigner distribution [HBB92] 

• the Choi-Williams distribution [CW89] 

• the reduced interference distributions [JW92] 

3Here, a multicomponent signal is loosely denned as any signal x(t) that may be expressed as a 
sum of two signals xi(t) +x2(t), each obeying a separate "time-frequency law." For a more precise 
definition, see [Coh92]. 



2.1.   Overview of Time-Frequency Representations 

time (t) frequency (f) 

Figure 2.1: Wigner distribution of ej2lrf + eil&Kt. Note the presence of crossterms at 
/ = 4.5Hz. The amplitude values should be ignored, as they involve finite approxi- 
mations of delta functions. Example first used in [CW89]. 
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• the cone-kernel distribution [ZAM90] 

• the spectrogram [Alt80]. 

All of the above TFRs perform some type of smoothing on the WD, but none of 
them completely eliminate crossterms for every type of signal. In addition, studies 
have shown that there is a tradeoff between crossterm suppression and autoterm 
concentration [HBB92, JP92]. In other words, those quadratic TFRs that smooth 
crossterms well also tend to have poor concentration of autoterms. The Wigner 
distribution is at one extreme of the tradeoff, providing maximal autoterm concen- 
tration but no suppression of crossterms [JP92]. At the other extreme of the tradeoff 
is the spectrogram, which provides substantial smoothing of crossterms but poor 
autoterm concentration [KBB92]. The spectrogram is the squared magnitude of the 
short-time Fourier transform, a linear TFR discussed in the next subsection. 

Since transient signal detection problems often involve multicomponent signals, 
the characterization of transient signals by means of quadratic TFRs is often prob- 
lematic because of the presence of crossterms. Any quadratic TFR used to de- 
tect multicomponent transient signals must provide good suppression of crossterms. 
Thus, the spectrogram is as suitable as any other quadratic TFR for use in transient 
signal detection, while the Wigner distribution by itself (i.e., with no smoothing) is 
unsuitable. This will be discussed further in the discussion on linear TFRs below. 

Finally, it should be noted that Cohen has formulated a unified approach to the 
class of quadratic, shift-invariant TFRs [Coh66, Coh89]. A TFR T(t,f) is defined 
as shift-invariant if 

y(t) = x(t - t0)e
2*fot =*► Ty(t, f) = Tx(t -t0,f- /o). 

The class of quadratic, shift-invariant TFRs is sometimes known as Cohen's class, 
and any member of Cohen's class may be derived from the Wigner distribution by 
means of a time-frequency convolution: 

Tx(t, f) = jti j 9T(t -t',f- f')WDx(t', f) dt'df, (2.8) 

where the kernel function \PT(*, /) corresponding to T(t, /) acts as a 2-D filter. All 
of the quadratic TFRs in the list above may be derived from the WD by means of 
equation (2.8), using the appropriate kernel function. 
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2.1.2    Linear TFRs: properties and examples 

As stated previously, a linear TFR is defined as a TFR that obeys the superposition 
principle (see equation (2.1)). There are three linear TFRs that are widely used: the 
short-time Fourier transform (STFT), the wavelet transform (WT) and the Gabor 
transform. The Gabor transform will be discussed in a separate overview in the next 
section of this chapter, so the focus here will be on the STFT and on the WT. 

The short-time Fourier transform 

The STFT of a signal x(t) is defined as 

STFTx{t, f)= f s(t')7*(*' - t)e~j2*ft' dt'. (2.9) 
Jt' 

It is often thought of as a "windowed Fourier transform," with the function 7* (2') 
serving as a sliding window. The STFT suffers from an inherent resolution tradeoff: 
good time resolution of the STFT requires 7*(*') to be narrow in time (i.e., a "short" 
window), while good frequency resolution of the STFT requires 7*(i') to be narrow 
in frequency (or narrowband, implying a "long" window in time). Unfortunately, 
the Heisenberg uncertainty principle4 [CM84, Coh89, LPA92] of Fourier analysis 
prohibits the existence of a window that has both good time resolution and good 
frequency resolution - hence the resolution tradeoff. 

The synthesis of a signal x(t) from its STFT is given by 

:(t) = [ f STFTJt', f')g(t - t'y2^'' dt' df , (2.10) 
Jt' Jf 

x( 

where g(t) is known as the synthesis window, as opposed to the analysis window 
7*(i') above. The synthesis and analysis windows must satisfy the fairly unrestrictive 
condition /t5

r(i)7*(i)<^ = 1 in order for (2.9) and (2.10) to be consistent. It is 
common to choose the synthesis window equal to the analysis window, with an 
appropriate normalization. 

Because it is linear, the STFT does not suffer from the presence of crossterms. 
However, the STFT is also complex-valued in general, making it difficult to use 
the STFT directly for transient signal detection problems unless one is prepared to 

4This is indeed the same Heisenberg uncertainty principle that arises in quantum mechanics, 
involving position and momentum instead of time and frequency. As Cohen notes, there is at least 
a "partial formal mathematical correspondence between quantum mechanics and signal analysis." 
See [Coh89] for details. 
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analyze complex hypothesis tests. More often, the complex-valued STFT is made 
real by taking its squared magnitude, known as the spectrogram: 

SPECx{t,f) = \STFTx(t,f)f . (2.11) 

The spectrogram is actually a quadratic TFR that can be derived from the Wigner 
distribution using equation (2.8) and an appropriate kernel, and it does contain 
crossterms. However, as noted earlier, the spectrogram provides substantial cross- 
term suppression (at the expense of autoterm resolution). In fact, Kadambe and 
Boudreaux-Bartels note that two signals whose spectrograms do not overlap in the 
time-frequency plane will have crossterms that are essentially zero [KBB92]. As will 
be detailed in subsequent chapters, it is usually assumed that transient signals are 
"far apart" in the time-frequency plane (far apart in time, at least), so detectors based 
on the spectrogram should not suffer from the presence of crossterms in transient 
signal detection applications. 

The wavelet transform 

The wavelet transform (WT) of a signal x(t) is defined as 

WT.it, f) 
\ ix{t'h*(iit'~t))dt'>        (2-12) 

where the analyzing wavelet 7*(2') corresponds to the window function of the STFT 
and /o represents the center frequency of the analyzing wavelet. The differences 
between the STFT and the WT can be seen more easily if one treats ^ Jn (2.12) 

above as a single quantity a = 4-, termed the scale factor. The WT of x(t) is then 
rewritten as 

WTx(t, o) = A/A / *(*')7* ("(*' - *)) dt'. (2.13) 
y \a\ Jt' \a / 

Actually, the WT is more appropriately referred to as a time-scale representation, 
as the frequency / = af0 in the WT acts as part of the scaling process [RV91]. 

Close inspection of equation (2.9) reveals that the STFT of x(t) at a particular 
time-frequency coordinate (t, f) is obtained by the following procedure: 

1. Shift the window function 7(2') by time t. 

2. Modulate the time-shifted window function by ej2nft. 
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3. Take the inner product5 of the signal with the time-shifted, frequency-modulated 

window function: STFTx(t, f) =< x,7(t,/) >, where 7(t,/)(i') = -y(? - t)ej2*ft'. 

In contrast, the WT of x(t) at a particular time-scale coordinate (2, o) is obtained 
by a slightly different procedure: 

1. Shift the analyzing wavelet function (AWF) 7(2') by time t. 

2. Scale the time-shifted AWF in time by ^ and normalize the result by J^. 

3. Take the inner product of the signal with the time-shifted, time-scaled AWF: 
WTx(t,a) =< x,7(t,a) >, where 7(t,a)(2') = ^7 (*?)■ 

Like the STFT, the WT suffers from a resolution tradeoff. Because of the dif- 
ference in the definitions of the two TFRs, the resolution tradeoff manifests itself 
differently in the WT: at high frequencies, the WT has good time resolution but 
poor frequency resolution; at low frequencies the WT has good frequency resolution 
but poor time resolution [HBB92]. Thus, the resolution of the WT does not depend 
on the choice of analyzing wavelet in the manner that the resolution of the STFT 
depends on the window function. Instead, the WT's resolution depends on the region 
of the time-frequency (or time-scale) plane at which the WT is evaluated. 

The synthesis of a signal x(t) from its WT is given by 

'(*) = 4 / [wT(t',a)1{t,,a)(t)dadt', (2.14) x 

where c is a constant that depends on 7(2'). The analyzing wavelet must satisfy an 
admissibility condition in order for (2.14) to hold. Daubechies [Dau91] points out 
that for 7 G LX{1V), the admissibility condition is equivalent to 

/7(2Vi' = 0. (2.15) 
Jt' 

Thus, 7(2') must be bandpass in order to reconstruct the signal from its WT. As 
noted by Rioul and Vetterli, this implies that 7(2') "oscillates in time like a short 
wave, hence the name 'wavelet' " [RV91]. 

As with the STFT, the WT is in general complex-valued, so signal analysts often 
work with the squared magnitude of the WT, known as the scalogram: 

SCALx(t, a) = \WTx(t, a)\2 . (2.16) 

5Here and throughout this work, unless otherwise noted, the inner product is defined as < x, y > 
= Jx(t)y*(t)dt. 
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The scalogram, which can be considered a quadratic TFR, is similar to the spec- 
trogram in that it provides substantial suppression of crossterms [KBB92]. In this 
sense, the scalogram is appropriate for use in transient signal detection problems. 
However, the bandpass nature of the analyzing wavelet required by (2.15) usually 
implies that the analyzing wavelet will not be well-matched to many models of tran- 
sient signals, including those examined in the following chapters. Thus, the WT 
and the scalogram are not considered in the majority of this dissertation, although 
the concluding chapter addresses the question of extending the methods and results 
presented in the dissertation to transient signal detection via the WT. 

2.2    Overview of the Gabor Transform 

2.2.1     Continuous-time Gabor transform 

Properties of the continuous-time Gabor transform 

Consider again the synthesis equation in (2.10) for the reconstruction of a signal x(t) 
from its STFT: 

x(t) =11 STFTx(t', f')g(t - t'y2*1'* dt df. (2.17) 
Jf Jfi 

If the integrals in (2.17) are approximated as summations, with the integrand sam- 
pled every At in time and every A/ in frequency, one obtains 

*(*) ~ £ £ STFTx(mAf, nAt)g(t - nAt)ej2^mAf>AtAf. (2.18) 
m     n 

This is essentially the continuous-time Gabor expansion of x(t). 

More precisely, the Gabor expansion of a signal x{t) is written as follows: 

*(*) = £ £ C^9{t - »)ej2xWf_(m) • (2-19) 
m     n 

The parameters a and ß correspond to the respective time and frequency sampling 
intervals At and A/ in (2.18) above. The complex-valued coefficients Cmn represent 
the Gabor transform of the signal x(t). Thus, the Gabor transform of a signal is 
implicitly defined through the decomposition shown in (2.19). 

The Gabor expansion can be thought of as a linear combination of the functions 

ft.« = 9(t - »)^mNn), (2.20) 
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which are sometimes termed the Gabor logons. Because the Gabor transform is only 
defined on a lattice in the time-frequency plane, it is important that the Gabor 
logons be well-localized in the time-frequency plane so that a given coefficient Cmn is 
a good indicator of the signal's time-frequency content at the corresponding location 
(na, mß) in the time-frequency plane. Particular choices of the window function g(t) 
that result in well-localized Gabor logons include the one-sided exponential window, 
to be discussed in Chapters 3-5, and the two-sided Gaussian window, to be discussed 

in Chapter 6. 

It is tempting to call the set of Gabor logons Q = {gmn} a basis, but such a 
characterization does not hold true in general, as the logons are not necessarily 
linearly independent6. However, expansion of a signal x(t) by (2.19) is guaranteed 
only if the set Q constitutes a frame [Dau90, Dau91], which is defined as follows: 

The collection of functions Q in its underlying Hilbert space H constitutes 
a frame if there exist constants A > 0 and B < oo such that, VfeG^, 

A\\h\\2 <^2\< h,gmn>\2 < BWhW 
m,n 

A and B are called the frame bounds. 

Here, the underlying Hilbert space for Q is L2(Tl), together with the inner product 
<h1,h2>=Jh1(t)h*2(t)dt. 

A necessary condition for Q to constitute a frame is that the parameters a and 
ß have product aß < 1 [Dau91]. The case where aß = 1 is termed critical sampling, 
while the case where aß < 1 is termed oversampling. Sufficient conditions for Q to 
constitute a frame are discussed by Daubechies [Dau90, Dau91], and these conditions 
depend on the window function g[t). 

Calculation of the continuous-time Gabor transform 

The Gabor transform coefficients cannot be calculated as simply as the STFT is in 
(2.9) above. If one attempts to discretize time and frequency in the STFT analysis 
equation in a manner similar to (2.18) above, one obtains 

STFTJm, n) = f x(t')g*(t' - nAt^2*^*»' dt' (2.21) 

6If the logons are not linearly independent, then the Gabor transform is redundant: a given 
signal may map to more than one set of Gabor coefficients, and each set of coefficients represents 
a valid Gabor transform of the signal. 
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(note that the analysis window has been set equal to the synthesis window). The 

discrete-valued TFR in (2.21) is called the sampled STFT [Orr93b], and it can be 
shown to be a "blurred" version of the Gabor transform [A+90, Orr93b], with the 
amount of blurring directly related to the orthogonality - or lack thereof - of the 
Gabor logons. 

Most of the existing literature addresses the calculation of the continuous-time 
Gabor transform coefficients only in the critical sampling case (aß = 1), so critical 
sampling will be assumed in the discussion that follows. When aß = 1, the Gabor 
expansion in (2.19) may be simplified to 

*(*) = E E C™g(t - Tn)e^ , (2.22) 
m     n 

where T= a = \. The Gabor transform coefficients in this case are commonly cal- 

culated in two ways, the Zak transform method (ZTM) and the biorthogonal function 
method (BFM) 7. 

The ZTM makes use of the Zak transform [Jan88]. For a given signal x(t), the 
critically sampled Gabor transform coefficients are given by 

C™ = f   /*   TITS6"1^"^/' (2-23) Jt'=0  Jf'=0   Zg{t', f) 

where Zx(t', /') is the Zak transform of x(t), evaluated in accordance with the critical 
sampling interval T: 

M*, /') = E <kT + t')e-J2*kTr ■ (2-24) 

The BFM generates a function8 7(2), called the biorthogonal function, that sat- 
isfies the following biorthogonality property: 

/°° j2ir<m-p)t 
^(i-nr)7*(i-gT)e     T 

-00 

=   8{n-q)8{m-p). (2.25) 

Since the biorthogonal function 7(2) is defined in relation to the window function 
g(t), it is more appropriate to use the notation 7g(t). If a biorthogonal function 73(i) 

7Orr details a third method for calculating the Gabor transform coefficients that involves de- 
convolving the sampled STFT. This method will not be addressed here; the reader is referred to 
[Orr93b] for details. 

8The notation j(t) is intentionally the same as for the analysis window of the STFT, because 
the biorthogonal function acts as an analysis window for the Gabor transform. 
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exists (and this is not always the case, even for some well-behaved window func- 
tions [Bal92]), then it acts as an analysis window to calculate the Gabor transform 
coefficients: ; 

cmn = Jt> x{tryy;p - nTy-^ dt. (2.26) 

The biorthogonal function 7S(<) may be generated via the Zak transform of the 
window function as follows: 

Observation of equations (2.23) and (2.27) reveals that both the ZTM and BTM will 
encounter problems in calculating the Gabor transform coefficients if the Zak trans- 
form of the window function contains zeros in the respective regions of integration. 
It is well known that this can occur even for certain well-behaved window functions 
[A+90, Bal92, Orr93bj. 

If only a finite subset of the Gabor transform coefficients need to be determined, 
there is a third method of calculation, which will be termed here the normal equations 
method (NEM). First, recall the Hilbert space H defined above for the set Q — 
{s»}mn=-oo °f Gabor logons, and consider the closed subspace Hi of ri spanned by 
the finite subset of Gabor logons {<7P}p=1 (the indices m and n have been reordered 
into a single index p). Then, for any function x € 7i, the unique function x G TCi that 
best approximates x (in the sense of minimizing ||x — x\\) must satisfy the property 
that the error function x — x is orthogonal to H.\ [BS90, FR94, NS82], i.e., 

<x-x,gp>=0,  p=l,...,P. (2.28) 

The latter fact is sometimes called the orthogonality principle for Hilbert spaces. 

Writing x as Y,p=\ Gv9y> one can rewrite (2.28) using the bilinearity of the inner 
product as 

< x,gp >=d <gi,gP> +C2 <g2,9P > +... + CP <gu9v >, P = 1,...,P. 

(2.29) 
This gives a set of P equations, called normal equations, with P unknowns (the 
Gabor transform coefficients Cp), and the Gabor transform coefficients can thus be 
obtained by solving this linear system of equations9. The discrete-time equivalent 
to the NEM, to be described in the next subsection, will play a major role in this 
dissertation. 

9Again, if the Gabor logons are not linearly independent, then the linear system of equations 
will be underdetermined and there will be an infinite number of solutions. However, when only a 
finite subset of Gabor logons is considered, it is almost always the case that the logons are linearly 
independent; in the latter case, the NEM produces a unique solution. 
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2.2.2    Discrete-time Gabor transform for finite-length sig- 
nals 

In practice, one must work with finite-length, discrete-time signals. It is thus impor- 
tant to understand how the properties of the Gabor transform and the calculation 
of the Gabor transform coefficients change in the case of finite-length, discrete-time 
signals. 

Consider first the discretized version of the Gabor expansion of a continuous-time 
signal x(t), sampled every A seconds: 

x(kA) = Y,Yl
C™9{kA-nay2™ftkA-na\   k = ..., -2, -1,0,1,2,... .   (2.30) 

m    n 

For finite-duration signals x(-), it can be assumed that k £ {0,1,2,..., L — 1}, where 
L is the length of the finite signal x(-). As mentioned in the discussion above on 
the normal equations method (NEM), it is also common to assume that only a finite 
subset of the Gabor transform coefficients are nonzero. In this case, the expansion 
(2.30) can be rewritten as 

M-lN-l 

x(kA) = E E Cmng(kA - na)^^-"«),   k = 0,1,2,..., L - 1,      (2.31) 
m=0 n=0 

where M and N are the maximum allowable frequency and time indices, respectively. 
Traditionally, the discrete-time signal x(kA) is denoted as x[k], with the sampling 
interval A suppressed. 

Starting from (2.31), there are three ways to proceed in order to calculate the 
discrete-time Gabor transform coefficients Cmn of x[k]: 

1. Treat (2.31) as an approximation of the continuous-time Gabor expansion 
(2.19) and calculate the discrete-time Gabor transform coefficients using a 
discrete-time biorthogonal function "fg[k\ that is the sampled version of the 
corresponding continuous-time biorthogonal function 7ff(t) (if the latter exists). 
This method was first explored in [FP92] and [PF92]. 

2. Rewrite (2.31) in a matrix equation of the form x = Gc, and calculate the 
discrete-time Gabor transform coefficients by finding the vector c that mini- 
mizes the squared error ||Gc — x\\. This is the discrete-time equivalent to the 
normal equations method detailed above. The underlying Hilbert space is the 
vector space TZL with inner product < a, b >= Y^k=oakK- This method was 
first proposed for use with the discrete-time Gabor transform in [BS90] and 
[EK91]. 
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3. Create a quasi-periodic signal x[k] = ^x[k -f IL] from the finite-length sig- 
i 

nal x[k] and derive a "discrete Gabor transform" (DGT) similar to the way 
the DFT for finite-duration signals is derived from the Fourier series. The 
biorthogonality condition (2.25) then has a discrete-time equivalent that can 
be solved numerically. Once the discrete-time biorthogonal function is found, 
the DGT coefficients can be calculated by means of inner products in a man- 
ner similar to (2.26). The Gabor transform coefficients in this case are doubly 
periodic, with period M in the frequency direction and period N in the time 
direction. This method has been explored extensively in the recent literature 
[Orr93b, QC93, WR90]. 

Method (1) above, which will be termed here the discretized biorthogonal function 
method (DBFM), will be examined in detail in Chapter 3; method (2), called here 
the least squares method (LSM), will be used throughout Chapters 3 through 5; and 
method (3), called here the periodized biorthogonal function method (PBFM), will be 
treated in detail in Chapter 4. 

For the finite Gabor transform of finite-length, discrete-time signals, the question 
of the completeness of the set Q of Gabor logons is simple to answer. All three of 
the methods mentioned above can be rewritten in matrix form as 

x = Gc, (2.32) 

where lislxl, Gisix MN, and c is MAT x 1. Method (3) above assumes that 
MN > L, i.e., that the number of transform coefficients is greater than or equal to 
the number of signal samples. In this case, the system (2.32) is underdetermined and 
the completeness of Q is assured unless G is less than full rank. Methods (1) and 
(2) make no assumptions on the relationship of MN to L, but it is often assumed 
for transient signal detection applications that MN < L. In this case, the system 
(2.32) is overdetermined and x cannot be reconstructed exactly unless it resides in 
the MAT-dimensional subspace spanned by the Gabor logons. 



Chapter 3 

The Gabor Transform In 
Transient Signal Detection 

3.1     Introduction 

This chapter applies the discrete-time Gabor transform to the problem of detect- 
ing finite-duration, discrete-time signals. The first part of the chapter, comprising 
sections 3.2-3.6, examines transient signal detection when the signal components to 
be detected are assumed to have known locations in the time-frequency plane. In 
section 3.2, a framework for the detection of transient signals, originally developed 
by Porat and Friedlander [FP92, PF92], is described. Section 3.3 then examines 
the calculation of the discrete-time Gabor transform coefficients within the Porat- 
Friedlander framework using two of the methods described at the end of Chapter 2, 
the discretized biorthogonal function method (DBFM) and the least-squares method 
(LSM). In this section, critical sampling is assumed. 

Section 3.4 presents a hypothesis test for the Porat-Friedlander framework and 
reviews the derivation and analysis of the GLRT detector for this hypothesis test, 
originally given in [FP89]. Again, the GLRT detector is derived under the assump- 
tion that the signal components to be detected have known locations in the time- 
frequency plane. The original contributions of this chapter begin in section 3.5, 
which examines the calculation of the discrete-time Gabor transform coefficients in 
the oversampled case using the LSM. The corresponding GLRT detector based on 
the oversampled LSM-Gabor transform is derived. In section 3.6, this last detector 
based on the oversampled Gabor transform is compared to four detectors based on 
critically sampled linear transforms: 

• the discrete-time Gabor transform calculated via the DBFM 

18 
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• the discrete-time Gabor transform calculated via the LSM 

• the sampled short-time Fourier transform (SSTFT) with analysis window equal 

to the synthesis window 

• the SSTFT with rectangular analysis window. 

The comparison is made by examining the robustness of each detector in the presence 

of various types of signal mismatch. 

The second part of the chapter, comprising sections 3.7-3.10, examines transient 
signal detection using the oversampled LSM-Gabor transform when the signal com- 
ponents to be detected are assumed to have unknown locations in the time-frequency 
plane. Section 3.7 derives the GLRT detector within the Porat-Friedlander frame- 
work in the "unknown location" (UL) case and examines the probability distribution 
of this unknown location detector. Section 3.8 calculates the performance curves of 
the UL detector and compares the performance of the UL detector to that of the cor- 
responding "known location" (KL) detector of section 3.5. The comparison is made 
by examining the robustness of each detector in the presence of mismatch in signal 
component location. Section 3.9 discusses a generalization of the results of the UL 
case recently studied by Scharf and Friedlander, called matched subspace detection 
[SF94], and it explains how the results of sections 3.7-3.8 are a special case of their 

analysis. 

Finally, section 3.10 summarizes the conclusions of this chapter and presents some 
ideas for future work. 

3.2    A Framework for Transient Signal Detection 

This section describes a framework recently developed by Porat and Friedlander 
for transient signal detection. For brevity, the Porat-Friedlander framework will be 
referred to henceforth as the PF framework. The PF framework assumes that the 
finite-length, discrete-time transient signal to be detected can be represented as a 
finite linear combination of Gabor logons gmn, critically sampled with parameters 
a = ß = l: 

M-lJV-l 

x[k] = x(kA)   =   52 E Cmng(kA - ny
2™kA (3.1) 

m=0 n=0 
M-1N-1 

=    E E Cm«9mn(kA),   k = 0,l,...,L-l, (3.2) 
m=0 n=0 
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where A is the sampling interval, L is the signal length, and 

9mn[k] = gmn(kA) = g(kA - n)e*™kA (3.3) 

The complex-valued constants Cmn in (3.2) represent the critically sampled Gabor 
transform coefficients of x[-]. 

The window function g[-], from which the Gabor logons gmn[-] in (3.3) above are 
derived, is assumed to be the sampled version of a one-sided exponential window. 
The continuous-time version g{t) of the one-sided exponential window is given as 
follows: 

g(t) = \/2\e-Xtu(t), (3.4) 

where A > 0 is the decay parameter of the window. The factor v2A is chosen so that 
S^oo d(t) dt = 1. The real part of a Gabor logon with one-sided exponential window, 
evaluated at m = 2,n = 2, and A = 1, is shown in Figure 3.1: 

4 5 
time (s) 

Figure 3.1: The real part of a time-shifted and frequency-modulated one-sided expo- 
nential window, sampled every A = ^ s. Parameter values are m = 2, n — 2, A = 1. 

Friedlander and Porat chose the one-sided exponential window as their model 
for transient signals because it "represents quite well the jump discontinuity and 
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the gradual decay ... typical to many physical transient phenomena" [FP89]. The 
discontinuity in the one-sided exponential window indicates that the time index 'n' 
of a particular Gabor logon jmn['] corresponds to the arrival time of that logon. 

The PF framework assumes, then, that the transient signal is a linear combina- 
tion of a finite number of Gabor logons, where each of the logons is a time-shifted 
and/or frequency-modulated version of the one-sided exponential window shown in 
Figure 3.1. Since the number of Gabor logons is finite, the double summation in (3.2) 
can be reordered into a single summation by means of an appropriate transformation 

such as 
l = nM + m (3.5) 

(so that n = I j^ I and m = I mod M). After the reordering, (3.2) can be rewritten 
as 

MN-X 

*[*]=   £   Ci9i[k], (3-6) 
l=o 

where the sampling interval A has been suppressed and where Ci i-> Cmn and gi [k] i-> 
</„!„[&] in the manner described above. The discrete-time relation in (3.6) can be 
rewritten in matrix form as 

x = Gc, (3.7) 

where the Zth column of G contains the samples of g\. In (3.7), x is L x 1, G is 

L x MN, and c is MN x 1. 

The PF framework then assumes that the signal x is embedded in additive white 
Gaussian noise and is observed as a vector y: 

y = x + v = Gc + v. (3-8) 

Porat and Friedlander originally assumed the signal x to be real-valued, so they also 
assumed real-valued noise with v ~ jV(0,I). Here, the signal x is assumed to be 
complex-valued in general, so the noise vector v is assumed to be v = vTe + jvim, 
with vre ~ Af(0,1), vim ~ ^(0,1), and v ~ .A/"(0,2I). (Clearly, it is also assumed 
that vre and Vim are independent.) 

A further critical assumption in the PF framework is that the number of possible 
nonzero signal components (and, therefore, the number of possible nonzero Gabor 
coefficients) MN is less than the length L of the signal x (which is also the length of 
each of the Gabor logons gi and the length of the observation y). This is assumed 
because the detector that eventually arises from the PF framework is based not on 
the observation vector y but on the (estimated) transform coefficient vector c. It 
is only useful to transform the observation vector y for detection purposes if the 
transform reduces the dimensionality of the problem, and the latter will only hold 
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true if the signal x itself is characterized by fewer Gabor transform coefficients than 
time samples. In general, the assumption MN < L (which will be referred to from 
here on as assumption Al) will be an accurate one when the actual signal components 
of x are well-modeled by the Gabor logons in (3.3). 

Because assumption Al may not always hold true, it is necessary to incorporate a 
mismatch vector e into the PF framework in order to account for those components 
in x belonging to the orthogonal complement of the subspace spanned by the MN 
Gabor logons. Thus, x = Gc + e and 

y = Gc + e + v, (3.9) 

with eHG = 0 (1 x MN)1. 

3.3     Calculating the Gabor Transform Within the 
PF Framework 

Within the PF framework, two methods mentioned at the end of Chapter 2 are 
effective in calculating the discrete-time Gabor transform coefficients: the discretized 
biorthogonal function method (DBFM) and the least-squares method (LSM). 

3.3.1     Discretized biorthogonal function method 

As mentioned in Chapter 2, the DBFM uses a discretized version of the continuous- 
time biorthogonal function 73(i) to calculate the discrete-time Gabor transform co- 
efficients by means of inner products. In [FP89], Friedlander and Porat showed that 
for g(t) equal to the one-sided exponential window given in (3.4), the corresponding 
biorthogonal function 7s(t) (generated by the Zak transform Zg(t, /') as shown in 
(2.27)) is given by 

7.W = ^ h«(* + 1) + 2u(*) - «(* - 1)] • (3-10) 

Sampling (3.10) every A seconds gives 

XkA 
7,[Jb] = 7S(A;A) = -j= {-u(kA + 1) + 2u(kA) - u(kA - 1)} . (3.11) 

xeH stands for the complex-conjugate transpose of e. 
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Given the discretized biorthogonal function (3.11), the Gabor transform coeffi- 
cients are generated by calculating inner products between the observed signal y[k] 
and time-shifted, frequency-modulated versions of (3.11): 

cmn = Y,ylkK,mn[k], (3.12) 
<fc=0 

where 
l9,mn[k] = 73,mn(*A) = 7fl(*A - ny2™kA . (3.13) 

Note that (3.13) assumes the fundamental Gabor expansion parameters a and ß 
axe both 1, in agreement with original assumptions of the PF framework. After a 
reordering as in (3.5) above, (3.12) can be rewritten as the matrix equation 

c = Ty = TGc + T(e + v), (3.14) 

where the Zth column of T contains nfg,i[-], sampled in the same way that x[-] is. 

The matrix T must have a number of columns equal to L (the signal length), but 
there is no restriction on the number of rows in T. However, since it is assumed that 
the maximum allowable time and frequency shifts for the components of x[-] are M 
and N, respectively, it is reasonable to use this knowledge to make T MN x L. In 
this case, the biorthogonality condition is rewritten in matrix form as 

TG = I (MN x MN). (3.15) 

If (3.15) is true, then T is said to be a left-inverse of G. Since G is non-square with 
a greater number of rows than columns, it has an infinite number of left-inverses, 
corresponding to different methods of estimating the Gabor transform coefficients. 

3.3.2    Least squares method 

As also mentioned in Chapter 2, the LSM begins with the matrix equation (3.9) and 
seeks to find the coefficient vector c that minimizes the squared error ||Gc — y||. It 
is well known [Sch91] that this "least-squared-error" solution is 

c = (GffG)-1GÄy. (3.16) 

The matrix B = (GHG)_1GH, known as the pseudoinverse of G, is clearly another 
left inverse of G. 
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3.3.3    General transforms within the PF framework 

In general, a linear time-frequency transformation of the observation vector y can be 
represented as a premultiplication by an appropriately-dimensioned matrix R, whose 
columns contain the "basis" vectors of the transform. Thus, the generic transform 
step in the PF framework can be written as 

z   =   Ry 

=   Rx + Re + Ru 

=   RGc + Re + w, (3.17) 

where z is the transformed observation vector and w ~ A/^O, 2RRH). 

Ideally, R will be a left-inverse of G. Any method of calculating the Gabor 
transform will correspond to a particular left-inverse of G (for example, the matrices 
r and B above). However, the PF framework allows the use of transforms whose 
corresponding R matrices are not left-inverses of G. The analysis in subsequent 
sections of this chapter will make use of two versions of the sampled short-time 
Fourier transform (SSTFT) whose corresponding R matrices are indeed not left- 
inverses of G. The first of these uses an analysis window based on a rectangular 
window with 1-second duration, 

g(t)=u(t)-u(t-l), (3.18) 

so that the corresponding transform matrix Sr contains time-shifted and frequency 
modulated versions of the discrete-time analog of (3.18). The second version of the 
SSTFT uses an analysis window equal to the synthesis window, i.e., the one-sided 
exponential window with parameter A. In this case, the corresponding transform 
matrix Se = G^. Again, neither Sr nor Se are left-inverses of G. 

3.4     Transient Detection Within the PF Frame- 
work 

3.4.1    Hypothesis test and GLRT statistic 

Consider once again the representation of the transformed observation z within the 
PF framework, assuming a generic transform matrix R: 

z = RGc + Re + w, (3.19) 
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where R is MAT x L and z and w are both MN x 1. In addition to assumption 
Al above that the number of possible nonzero signal components is small compared 
to the number of signal samples (MN < L), the PF framework makes a further 
assumption - to be called A2 - that the actual number of nonzero signal components 
is small compared to the number of possible nonzero signal components. Assumption 
A2 is also called the sparseness assumption [PF92], and it is made because transient 
signals are defined to comprise only a small portion of the observation interval. In 
other words, if relatively many of the components of c in (3.19) are nonzero, then 
the signal x would no longer be a transient signal. 

To implement assumption A2, Porat and Friedlander postulated that the signal 
x to be detected has a coefficient vector c with K nonzero components (K « 
MN), all of which have known locations within c (i.e., known locations in the time- 
frequency plane). The known-location assumption will be called A3. Since the 
nonzero component locations are assumed to be known, c can always be rearranged 
so that the K nonzero components reside at the top of the coefficient vector. Thus, 
it is assumed without loss of generality that c is of the following form: 

c = —* 
0 

(3.20) 

where c\ is K X 1. Of course, all the other components in the framework (3.19) must 
also be rearranged to conform to the format of c in (3.20). For example, G should 
be arranged into [Gi G2], where Gx is comprised of the K Gabor logons whose 
time-frequency locations correspond to the (known) locations of c\. The reordered 
version of (3.19), then, is given by 

zi 
z2 

Ri 
R2 

[Gx G2] 
—* 
—* 
0 + Rie " 

R2e 

RaC 
R2C *lC~l 

+ Rie 
R2e + w. 

_    +w 

(3.21) 

When R is a left-inverse of G, R1G1 = I and R2Gi = 0. The dimensions of the 
matrices in (3.21) are as follows: Gx and Rf are L x K, while G2 and Rf are 
L x (MN - K). 

Given (3.20) with assumptions Al, A2, and A3, detection of the transient signal 
x within the PF framework is tested by the following binary hypothesis test: 
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Ho : ci = 0 

vs. 

Hi : cx ± 0. (3.22) 

The alternative hypothesis here is a composite hypothesis test, so Porat and Fried- 
lander proposed the use of the generalized likelihood ratio test (GLRT) to derive a 
detection statistic. The GLRT for a simple null hypothesis and a composite alterna- 
tive hypothesis, given observations Fand parameters ci, is defined as 

maxpi(z | ci) 

' Tm ' (3-23) ci 

where pi(z) is the probability distribution of z under hypothesis i. Taking the natural 
log of (3.23) gives a more suitable form of the GLRT: 

* = max{2logp1(i'|ci)} - 21ogp0(^), (3-24) 
ci 

where the factor of 2 is included for convenience. 

Since the detector does not have have knowledge of the mismatch vector e, the 
GLRT statistic is calculated assuming e = 0 (although e reappears when calculating 
the probability distributions of the GLRT statistic for performance analysis). Using 
this assumption, and recalling that w ~ jV(0,2RRH) in (3.19), it is clear that the 
observation vector z ~ A/^RGc, 2RR-ff). Friedlander and Porat used the above 
information to show in [FP89] that, for transforms R that are left inverses2 of G 
(i.e., RG=I), the GLRT statistic for the hypothesis test of (3.22) is given by 

* = z^A-lz-z2
HA.-^z2, (3.25) 

where 

(3.26) RRH = A 
An   Ai2 

A21   A22 

It was shown in [PF92], which assumed real-valued noise, that the test statistic 
t is x2 distributed with K degrees of freedom, with the distribution being central 
X2 under hypothesis H0 and noncentral %2 under hypothesis Hi, with noncentrality 
parameter 

v = (GiBi + ?)HP{GiCi + e). (3.27) 

2The calculations become intractable when R is not a left-inverse of G. 
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The matrix P in (3.27) is a projection matrix and is given by 

P   =   (Rf - Rf (R2Rf r^Rf) 

(R1(I-Rf(R2Rf)-1R2)Rf)"1 

(Rj - RiRf (R2Rf )_1R2) • (3.28) 

x 

x 

A more compact (but less understandable) form of P is given in [PF92] using pro- 
jection operators. 

In the case where complex-valued noise is used, the test statistic t is still %2- 
distributed, with a central distribution under H0 and a noncentral distribution with 
noncentrality parameter v given by (3.27) under H\. However, there are 2K degrees 
of freedom in the %2 distribution for either hypothesis, because there are two random 
noise components in the complex noise per signal sample. 

3.4.2    Analysis of GLRT statistic within PF framework 

Note that when c takes the form in (3.20) and when R is a left-inverse of G, as was 
assumed in deriving the GLRT statistic (3.25), the signal x is given by x = Gxci + e. 
Thus, the noncentrality parameter in (3.27) can be rewritten 

x HPx. (3.29) 

Now for a given false alarm probability and for a given number of degrees of freedom, 
the detection probability of the test statistic t for the hypothesis test (3.22) is a mono- 
tonically increasing function of the noncentrality parameter v. It is clear from (3.29), 
however, that v depends on the signal x itself, which in turn depends on the mis- 
match vector e. Thus, the detection performance of t is a function of the energy e e 
of the mismatch vector e in relation to the energy E = xHx = (GiCi + e)H(G\Ci -f e) 
of the entire signal x. This relationship is quantified by the variable 

eHe 

E   ' 

which measures the fraction of mismatch energy to total signal energy. 

(3.30) 

The robustness of t in the presence of mismatch is best measured by the minimum 
value of the noncentrality parameter in (3.27), denoted as vmin, minimized over all 
vectors e satisfying the previously established constraints 

eHGiCi   =   0 (orthogonality) ,„„.v 
eHe   =   E-cfGfGxci    (energy). ^^ 
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The minimum noncentrality parameter represents the worst-case GLRT detector 
performance, so a relatively high value of i/min indicates a relatively robust GLRT 
detector. Note that the orthogonality constraint in (3.31) is slightly weaker than the 
original condition that e*G Gx: here, e£ G^. 

It was shown in [PF92] that the solution to the minimization problem 

mini/ = mm(GiCi + e)HP(G1c1 + e), (3.32) 
e e 

subject to the constraints on e in (3.31), is given by 

umin = E (7(1 - p)<j> - V(W>)2 , (3-33) 

where 

* -   cfGfG^ (3-34) 

and where p < <f>. The necessity of the latter inequality was not checked in [PF92] 
but is verified in Appendix 3.A at the end of this chapter. 

Because umi„ in (3.33) is dependent on the parameter <j>, and (j> in turn is depen- 
dent on GiCi, the expression for vmin in (3.33) is dependent on the values of the 
nonzero signal components found in ci. However, note that when p is fixed, vmin is 
a monotonically increasing function of <f> when p < <$>. As described by Porat and 
Friedlander in [PF92], it is actually possible to derive a signal-independent lower 
bound on (f>. To do this, first observe that (j> in (3.34) is of the form 

* = w* > (3-35) XQ XQ 

where XQ = GiCi. Because P is a projection of the L x K matrix 

(Rx — R2 (R2R.2)   R-2R-1) 

(recall that K is the number of nonzero components in x and L is the number 
of samples in x), P can be decomposed into P = UUÄ', where U is L x K and 
U^U = I (K x K). Also, as xo lies in the span of Gi, it can be expressed as 
x0 = Vc2, where the columns of V [L x K) form an orthonormal basis for Gi (so 
that V is unitary). Using the last two relations, <f> can be rewritten as 

= gv«üu»va 
C?C2 
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In this case, the minimum value of <f) over all vectors c2 is given by the square of the 
minimum eigenvalue of U^V [GL83]: 

<j>Min = min{£2 : Pv = £v for some v} . (3.37) 

This <j>Min (note the distinction in notation between <f>min and <f>Min) can then be sub- 
stituted into (3.33) along with the fixed value of p to obtain the signal-independent 

minimum fMin of the noncentrality parameter. 

The value of <f>Min in (3.37) leads to the minimum noncentrality parameter i/m,n 

over all possible mismatch vectors e satisfying (3.31) and over all possible signals 
s0 corresponding to a given set of K Gabor logons that comprise Gx. In order to 
find the most general minimum of v, it is necessary to minimize ^ not only over 
all x*o corresponding to a given set of K component locations, but over all x0 cor- 
responding to any set of K component locations. There is no easy way to do this 
type of minimization; the exact answer requires that one calculate <j>Min in (3.37) 

for each of ( K ) possible combinations of the K nonzero component locations and 

then take the minimum among all the calculated <f>Min values. In [FP92] and [PF92], 
Porat and Friedlander used simulated annealing to perform this last minimization, 
but a different method will be used shortly in Section 3.6. Once the "location" min- 
imization is performed, the "global" minimum <f>Mm can again be substituted along 
with the fixed value of p into (3.33) to obtain what is finally a signal-independent, 
location-independent lower bound on the noncentrality parameter, denoted as VMIN- 

3.5    PF Analysis Results and Suggestion For Ro- 
bustness Improvement: Over samp ling 

3.5.1     Porat-Friedlander results 

In [PF92], Porat and Friedlander used their framework to compare the performances 
of GLRT statistics based on three critically sampled linear TFRs: 

• the discrete-time Gabor transform with one-sided exponential window, calcu- 
lated via the DBFM using the biorthogonal function (3.11). This corresponds 
to R = r from (3.14), and the GLRT statistic based on T will be called the 
DBFM-Gabor detector. 

• the discrete-time Gabor transform with one-sided exponential window, calcu- 
lated via the LSM. This corresponds to R = B, the pseudoinverse of G. The 
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GLRT statistic based on B will be called the LSM-Gabor detector. 

the SSTFT with 1-second rectangular window3. This corresponds to R = Sr 

as detailed in subsection 3.3.3, and the GLRT statistic based on Sr will be 
called the RW-SSTFT detector. 

The comparison was made by determining the most general minimum noncen- 
trality parameter VMW (as described at the end of the previous section) for several 
cases that determine the effects of using incorrect information in the formation of 
the three transform matrices R above. Incorrect information was also termed "mis- 
match" in [PF92], but this type of mismatch should be distinguished from the type 
of mismatch modeled by the mismatch vector e in the previous two sections. The 
latter type of mismatch arises from incomplete modeling of the signal x by the signal 
subspace matrix G, while the former type of mismatch arises from incorrect assump- 
tions about a given signal x that affect the formation of the transform matrices R. To 
distinguish the two types of mismatch, the following terminology will be used from 
this point on: model mismatch will refer to the mismatch modeled by e within the 
PF framework, while information mismatch will refer to the mismatch that causes 
incorrect formation of the transform matrices R. 

The specific parameter values used by Porat and Friedlander for their analysis 
were as follows: M = iV = 8, K — 6, L = 256, A = ^ (see equation (3.2) and the 
discussion just before equation (3.20) to review the meanings of these parameters). 
As mentioned above, Porat and Friedlander worked with reaZ-valued Gabor logons 
instead of complex-valued logons in forming R and G. For every possible signal 
component location in the time-frequency plane, they replaced the complex-valued 
Gabor logon (see (3.3)) containing a complex exponential term with two real-valued 
logons, one containing a cosine term and the other containing a sine term. Because 
of this, the %2 distribution of the GLRT statistic t for the case of real-valued signals 
also has 2K degrees of freedom under either H0 or Hi (not K degrees of freedom, 
as reported in [PF92]) 4. Thus, there is essentially no difference, as far as the 
performance of the GLRT statistic is concerned, between using real-valued signals 
and using complex-valued signals: the distributions of the statistic in both cases 
are identical under both Ho and Hi. It is important to note that the number of 
degrees of freedom does not affect the analysis of this section or the next, because 
all the GLRT statistics have the same number of degrees of freedom for a given set 

3Critically sampling in the SSTFT is equivalent to taking At = A/ = 1 in (2.21). 
4One other consequence of using two real-valued logons per time-frequency location is that 

K should be replaced everywhere by 2K and MN should be replaced everywhere by 2MN in 
section 3.4. 
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of parameters in the PF framework; it is the noncentrality parameter that varies as 

the transform R varies. 

There were seven cases of information mismatch examined by Porat and Fried- 
lander in [PF92]: 

1. There is no information mismatch (perfect knowledge of the signal). 

2. The decay parameter A in the one-sided exponential window (3.4) is assumed 
to be 1, but it is actually 0.5. 

3. The parameter A is assumed to be 1, but it is actually 2. 

4. The parameter A is assumed to be 0.5, but it is actually 1. 

5. The parameter A is assumed to be 2, but it is actually 1. 

6. The arrival times are assumed to take on integer values (ranging from 0 to 7), 
but they actually take on values that are odd multiples of 0.5 (ranging from 

0.5 to 7.5). 

7. The modulation frequencies are assumed to take on integer values (ranging 
from (0 to 7), but they actually take on values that are odd multiples of 0.5 
(ranging from 0.5 to 7.5). 

Cases 2-5 will be termed here shape mismatch, while cases 6-7 will be termed location 
mismatch. For the last two cases, Porat and Friedlander included two logons in the 
transform matrices Ri for each of the logons in Gi corresponding to the nonzero 
signal components, namely the two logons "surrounding" each signal component. 
For example, if the logon corresponding to (t,/) = (1,2) was included in Gi, the 
logons corresponding to (1,2) and (2,2) were included in Ri. 

Table 3.1 show the values for 4>MIN that Porat and Friedlander calculated in 
[PF92] for the three detectors mentioned above in the seven cases mentioned above. 
As noted in the previous section, they used simulated annealing to perform the 
location minimization. The 4>MJN values in Table 3.1 can be substituted along with 
various values of p (provided p < <f>) into (3.33) to obtain the behavior of VMJN 

versus p. Recall, though, that VMIN is a monotonically increasing function of <J>MIN 

for fixed p such that p < (f>, so the robustness of the three detectors in the presence 
of information mismatch can be determined directly from Table 3.1: higher values 
of (f>Mm (up to a maximum value of 1) mean greater robustness. An examination of 
Table 3.1, then, reveals the following three points: 
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Case 
Detector 

r B sr 
1 0.6688 1 0.7107 
2 0.6980 0.8397 0.5717 
3 0.3273 0.7937 0.5771 
4 0.6840 0.8425 0.7107 
5 0.3361 0.7935 0.7107 
6 0.0476 0.0451 0.1574 
7 0.2589 0.2622 0.4137 

Table 3.1: Values of <J>MIN for different cases of information mismatch, as reported in 
[PF92]. 

• The LSM-Gabor detector B is the most robust (i.e., has the highest value of 
4>MIN) of the three detectors when there is no mismatch or any type of shape 
mismatch. 

• The DBFM-Gabor detector is the least robust of the three in almost every 
case. 

• The SSTFT detector is the most robust of the three when there is any type 
of location mismatch. However, all three detectors perform significantly worse 
when there is any location mismatch. 

Note that the detector based on Sr is independent of the A parameter. Thus, the 
performance of the RW-SSTFT detector in the presence of shape mismatch is deter- 
mined by how well the 1-second rectangular window matches the actual one-sided 
exponential window. Inspection of cases 2-5 reveals that the 1-second rectangular 
window is most well-matched to a one-sided exponential window with A = 1. 

3.5.2    Oversampling to improve GLRT robust 
presence of location mismatch 

ness in the 

It is clear from the Table 3.1 and the subsequent observations that the most harmful 
type of information mismatch within the PF framework is location mismatch, any 
mismatch between the actual and expected time-frequency locations of the signal's 
logons. One simple way of improving the robustness of any Gabor-transform-based 



3.5.   PF Analysis Results and Suggested Improvement: Oversampling 33 

detector in the presence of location mismatch is to increase the density of the time- 
frequency lattice over which the Gabor transform is calculated. Recalling the original 
definition of the discrete-time Gabor expansion, 

M-1N-1 

x(kA) = E E Cmn9(kA - na)^2™^-),   k = 0,1,2,..., L - 1,      (3.38) 
m=0 n=0 

this increase in density corresponds to the oversampling case where aß < 1. Through- 
out the remainder of this dissertation, the oversampled Gabor transform will be im- 
plemented with values of a = ß = 0.5, meaning that the density of Gabor logons is 
increased by a factor of 2 in both the time and frequency directions. This is done 
for simplicity, and it should quickly be noted that different values of a and ß can be 
used in the following analysis, with minimal adjustments5. 

The following example illustrates the best-case improvement resulting from over- 
sampling the Gabor transform. First, consider the left-hand side of Figure 3.2, which 
shows the magnitudes of the critically sampled LSM-Gabor coefficients (assuming 
one-sided exponential window) for a two-component signal. The two components 
each have magnitude 1 and are located at (t,f) coordinates of (1,1) and (3,1), re- 
spectively. There is no mismatch in this case: the arrival times and modulation 
frequencies of the two components are integer-valued. The corresponding contour 
plot shows that the two components are well-resolved. Then consider the right-hand 
side of Figure 3.2, which shows the same thing as the left-hand side except that the 
(t, f) coordinates of the two signal components are now (1,1.5) and (3,1.5) instead. 
Here, there is a location mismatch in the frequency direction. The corresponding 
contour plot shows that the two components are much less well-resolved. 

Now consider the magnitudes of the oversampled LSM-Gabor transform coeffi- 
cients of the same two signals, shown in Figure 3.3. To compensate for the fact that 
the density of the oversampled Gabor logons is twice that of the critically sampled 
Gabor logons in both the time and frequency directions, the LSM-Gabor coefficients 
were calculated over a smaller overall range of (£, /) coordinates. In other words, 
M = N = 8 with a = ß = 0.5 in (3.38) means that the maximum arrival time 
and maximum modulation frequency of any of the oversampled Gabor logons is 
3.5 (as compared to 7 for the critically sampled Gabor logons). The oversampled 
LSM-Gabor transform coefficients are calculated in the same way as the critically 
sampled LSM-Gabor transform coefficients, using the pseudoinverse. In the oversam- 
pled case, of course, the signal subpace matrix G contains the oversampled Gabor 
logons instead of the critically sampled Gabor logons (see the next section for the 

5There are consequences in terms of the stability of the Gabor transform coefficients when a 
and ß are taken to be too small, and this will be discussed in Chapter 4 
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frequency frequency 

Figure 3.2: Left-hand side: time history (real part), critically sampled LSM-Gabor 
transform coefficients, and corresponding contour plot for signal with components at 
(1,1) and (3,1) (no location mismatch). Right-hand side: time history (real part), 
critically sampled LSM-Gabor coefficients, and corresponding contour plot for signal 
with components at (1,1.5) and (3,1.5) (frequency mismatch of 0.5). 
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frequency 

Figure 3.3: Left-hand side: time history (real part), oversampled LSM-Gabor co- 
efficients, and corresponding contour plot for signal with components at (1,1) and 
(3,1) (no location mismatch). Right-hand side: time history (real part), oversampled 
LSM-Gabor coefficients, and corresponding contour plot for signal with components 
at (1,1.5) and (3,1.5) (also no location mismatch). 
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exact meaning of this). Figure 3.3 clearly shows that the two signal components 
are well-resolved in either case. The reason for this is that neither of the signals is 
information-mismatched with the oversampled Gabor logons. In the best-case, then, 
the improvement in component resolution due to oversampling is dramatic. 

The improvement from oversampling is not always as dramatic as that shown in 
the above example. In fact, as will be discussed in the next chapter, one encounters 
stability problems when calculating the oversampled LSM-Gabor transform coeffi- 
cients. However, the reason that using oversampled Gabor GLRT detector within 
the PF framework should improve detector robustness in the presence of location 

mismatch is obvious: with logons that are "closer together" (by a factor of 2), the 
worst-case location mismatch is only 0.25 in either the time or frequency directions, 
instead of 0.5. Even in the worst case of mismatch, most of the energy of the signal 
x will be captured by the surrounding transform coefficients. This intuitive line of 
reasoning is supported by the results of the next section. 

3.6     Comparison of Detector Performances: Over- 
sampled Gabor Detector vs. Critically Sam- 
pled Detectors 

This section compares the robustness of a GLRT detector based on the oversampled 
LSM-Gabor transform to the robustness of GLRT detectors based on four critically 
sampled linear transforms. The transform matrices corresponding to the five detec- 
tors are as follows: 

• R = r representing the discrete-time, critically sampled DBFM-Gabor trans- 
form with one-sided exponential window. 

• R = Bc, representing the discrete-time, critically sampled LSM-Gabor trans- 
form with one-sided exponential window. 

• R = Sr, representing the critically sampled SSTFT with rectangular window. 

• R = Se = GH, representing the critically sampled SSTFT with one-sided 
exponential window. 

• R = B0, representing the discrete-time, oversampled LSM-Gabor transform 
with one-sided exponential window. 
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The matrix B„ for the oversampled LSM-Gabor transform is given by (GfG0)
-1G^, 

where the columns of G„ contain, instead of the critically sampled logons in G, 
oversampled logons of the form 

gmn[k] = gmn(kA) = g(kA - 0.5n)ej2<0-5^kA-°^. (3.39) 

The original analysis by Porat and Friedlander that was detailed in the previous 
section used GLRT detectors based on the first three transforms above. The SSTFT 
with one-sided exponential window is included in the analysis here as an additional 
basis of comparison. 

3.6.1     Modified framework 

Because the oversampled LSM-Gabor detector with a = ß = 0.5 looks for signal 
energy at twice the resolution of any of the three critically sampled detectors in both 
the time and frequency directions, two assumptions need to be made in order to 
ensure a fair comparison with the critically sampled detectors. 

The first assumption, made to keep the computational load the same for all the 
detectors, is that M and N in equation (3.38) must be the same for all the detectors. 
For the oversampled detector, values of M = N = 8 signify that the maximum arrival 
time and maximum modulation frequency for any of the oversampled Gabor logons 
are both 3.5 (not 7, as with the critically sampled detectors). Thus, the actual time- 
frequency coordinates (t, /) of the K = 6 nonzero signal components are assumed 
to satisfy 0 < t < 3.5 and 0 < / < 3.5. The critically sampled transforms are 
thus calculated over a greater time-frequency range than necessary (0 to 7 in both 
time and frequency, when the actual components range only from 0 to 3.5), but this 
does not affect detector performance since the locations of the signal components are 
assumed known. 

The second assumption, made to ensure that the signal to be detected is the 
same for all the detectors, is that the time-frequency coordinates (i, /) of the K = 6 
nonzero signal components take on values contained in the critically sampled (a = 
ß — 1) Gabor transform lattice, i.e., t and / are always integer-valued. Location 
mismatch is then simulated by shifting from points on the critically sampled lattice. 
For example, a frequency mismatch of fm is simulated by adding fm to the frequency 
coordinates of all the logons in the signal subspace matrix G. Figure 3.4 shows the 
possible signal component locations for the cases of no location mismatch and 0.25 
frequency mismatch. Actually, this is exactly how location mismatch was simulated 
by Porat and Friedlander in the analysis of the previous section, but it needs to be 
made clear here that location mismatch for the oversampled detector is still simulated 
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Figure 3.4: Possible signal component locations for modified PF framework, in the 
cases of no location mismatch (marked by V) and frequency mismatch of 0.25 
(marked by 'x'). 

by shifting logons of the critically sampled signal subspace matrix G, not by shifting 
the logons of the oversampled signal subspace matrix G0. 

In the analysis that follows, the values of the PF framework parameters are set 
to the values that Porat and Friedlander used: M = N = 8, K = 6, L — 256, 
and A = ^. There are two differences, however, in the methods used to obtain 
<t>Mm (and thus, VMIN)- First, it is not assumed here that the signals and transform 
coefficients are necessarily real-valued. Thus, only one complex-valued logon (instead 
of two real-valued logons) is included in G and R for every possible signal component 
location in the time-frequency plane. Second, simulated annealing is not used to find 
the location minimum <j>Mm over all l1^) = 8008 possible location combinations of 

the K signals components6 Instead, the location minimization is accomplished here 
in three steps: 

1. Generate randomly several hundred location combinations. 

2. Observe what "types" of location combinations are likely to produce low values 
of <j>Min (the signal-independent minimum for a given location combination). 

6The total number of possible time-frequency coordinates for the signal components is 16 instead 
of 64 because of the assumption above regarding computational loads; see Figure 3.4. 
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3. Examine slight permutations of the "bad" location combinations of step 2 to 
determine finally a location-independent minimum, 4>MIN- 

This method actually turns out to be an "intelligent" form of simulated annealing. 
In real-life detection problems, the number of possible location combinations would 
probably be much greater than 8008, so an exhaustive search for <I>MIN would likely 
be impractical; for practical purposes, either simulated annealing or the method 
described above should be used to find <J>MIN- 

3.6.2    Location mismatch 

Table 3.2 below lists the values of 4>MIN for the five detectors in six cases of location 
mismatch. Cases 1-3 involve arrival-time mismatches of 0, 0.25, and 0.5, respectively. 
In these three cases, because an arrival-time mismatch is expected, two logons are 
included in each transform submatrix Ri for every logon in the signal submatrix 
Gi, in such a way that if a logon with (2, /) coordinates (TO0,n0) is included in 
Gi, logons with (£,/) coordinates (mo,n0) and (m0,no + 1) are included in Ri 
(critically sampled). For the oversampled LSM-Gabor detector, the two logons have 
(t,f) coordinates (m0,n0) and (m0,n0 + 0.5) instead. Cases 4-6 involve frequency 
mismatches of 0, 0.25, and 0.5, respectively. In these three cases, because a frequency 
mismatch is expected, two logons are again included in each Ri for every logon in the 
signal submatrix Gi, this time in such a way that if a logon with (t, f) coordinates 
(mo,n0) is included in Gi, logons with (t,f) coordinates (m0,n0) and (m0 + l,n0) 
are included in Ri (critically sampled). For the oversampled LSM-Gabor detector, 
the two logons have (i, /) coordinates (TOO, no) and (mo + 0.5,no) instead. The above 
procedure is followed for the sake of consistency even when the location mismatch 
(arrival-time or frequency) is 0. Note that the maximum value for (f> is 1, which 
corresponds to matched filter (ideal) detection. 

Examination of Cases 1-3 reveals that the oversampled LSM-Gabor detector is 
clearly the most robust of all the detectors in the presence of arrival-time mismatch. 
Of particular interest is Case 3, representing an arrival-time mismatch of 0.5 from 
the critically sampled Gabor lattice depicted in Figure 3.4. This is the worst case of 
arrival-time mismatch for the critically sampled detectors, but any signal component 
with an arrival-time mismatch of 0.5 from the critically sampled Gabor lattice is 
matched to the neighboring oversampled Gabor logon. Thus, for the oversampled 
LSM-Gabor detector, the worst-case arrival-time mismatch is actually 0.25. Even in 
this case (case 2 in Table 3.2), the detector B0 is still most robust. 

Examination of Cases 4-6 reveals that the oversampled LSM-Gabor detector is 
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Case 
Detector 

r Bc sr sc B0 

1 0.7165 1 0.8615 0.5616 1 
2 0.1633 0.1512 0.2285 0.2042 0.4549 
3 0.0955 0.0929 0.1555 0.1410 1 
4 0.7165 1 0.7348 0.4794 1 
5 0.4360 0.5330 0.5636 0.4518 0.8180 
6 0.1471 0.1871 0.2496 0.1987 1 

Table 3.2: Values of <^MDV for different cases of location mismatch. 

again clearly the most robust of all the detectors in the presence of frequency mis- 
match. In general, frequency mismatch is not as harmful as arrival-time mismatch, 
probably because the discontinuity in the one-sided exponential window makes each 
of the transforms particularly sensitive to arrival-time mismatch. Figures 3.5-3.8 
show the variation of VMJN versus the fraction of mismatch energy p for cases 2, 3, 
5, and 6 in Table 3.2 above. The values of VMIN are calculated from equation (3.33) 

using the values of <J>MIN shown in Table 3.2. 
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Figure 3.5: Detector performance for arrival-time mismatch of 0.25. 'CS' stands for 
"critically sampled"; 'OS' stands for "oversampled." 
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Figure 3.6: Detector performance for arrival-time mismatch of 0.5. 'CS' stands for 
"critically sampled"; 'OS' stands for "oversampled." Note that the curve for the 
LSM-Gabor (OS) detector resides at the very top of the graph. 
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Figure 3.7:  Detector performance for frequency mismatch of 0.25.  'CS' stands for 
"critically sampled"; 'OS' stands for "oversampled." 
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3.6.3    Shape mismatch 

Table 3.3 below lists the values of 4>Mm for the five detectors in seven cases of shape 
mismatch. Case 1 is the no mismatch case: both the actual and assumed values for 
A in the one-sided exponential window are 1. Cases 2-4 represent situations where 
A is overestimated: in case 2, A is assumed to be 1 when it is actually 0.5; in case 3, 
A is assumed to be 2 when it is actually 1; in case 4, A is assumed to be 4 when it is 
actually 1. Cases 5-7 represent situations where A is underestimated: in case 5, A is 
assumed to be 0.5 when it is actually 1; in case 6, A is assumed to be 1 when it is 
actually 2; in case 7, A is assumed to be 1 when it is actually 4. In all of these cases, 
only one logon is included in Ri for every logon in Gi. 

Case 
Detector 

r Bc sr sc B„ 
1 0.7165 1 0.7287 0.3890 1 
2 0.7443 0.8515 0.5761 0.2800 0.8767 
3 0.4488 0.8123 0.7287 0.3071 0.8222 
4 0.1440 0.4194 0.7287 0.1424 0.4191 
5 0.7453 0.8487 0.7287 0.3191 0.8786 
6 0.4488 0.8105 0.6237 0.3178 0.8191 
7 0.1430 0.4130 0.2510 0.1518 0.4124 

Table 3.3: Values of <J>MIN for dhTerent cases of shape mismatch. 

Examination of Table 3.3 reveals that, unless the shape mismatch is fairly severe 
(i.e., the assumed A is off by a factor 4 from the actual A), the oversampled LSM- 
Gabor detector is most robust.  Notice that for all cases (1, 3, 4, and 5) where the 
actual value of A is 1, the values of (j)MiN for the SSTFT detector with rectangular 
window remain the same. This occurs because the rectangular window is independent 
of the shape parameter A.  Thus, the values of (/>MM for the Sr column reflect how 
well the 1-second rectangular window matches the one-sided exponential window 
with the given value of A. It should also be noted that oversampling the LSM-Gabor 
detector does not provide a substantial improvement in performance over that of the 
critically sampled LSM-Gabor detector when there is shape mismatch.  This is to 
be expected, as oversampling does not affect the shape of the window used in the 
Gabor transform in any way. 
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3.6.4    Effects of varying the number K of signal components 

One other question to examine is how the performance of the five GLRT detectors 
is affected when the number of known signal components is reduced from K = 6 
to K = 2. Table 3.4 below shows the values of (/>MIN for the five detectors for the 
same cases examined in Tables 3.2 and 3.3. The eleven cases listed in Table 3.4 are 
identified as follows: 

1. arrival-time mismatch of 0 

2. arrival-time mismatch of 0.25 

3. arrival-time mismatch of 0.5 

4. frequency mismatch of 0 

5. frequency mismatch of 0.25 

6. frequency mismatch of 0.5 

7. shape mismatch with Atrue = 1 and Xaaaumed = 1 

8. shape mismatch with Atrue = 0.5 and Xassumed = 1 

9. shape mismatch with Atrue = 1 and Xassume(i = 2 

10. shape mismatch with XtTUe. = 1 and Xa33umed = 4 

11. shape mismatch with Xtrue = 1 and XaasUmed = 0.5 

12. shape mismatch with XtTUe = 2 and AOJ5ume(£ = 1 

13. shape mismatch with Atrue = 4 and Xa33umed = 1 • 

An added advantage to setting K = 2 is that the location minimization to determine 
location-independent values of 4>MM can be done through exhaustive search, as there 
are only f^6) =120 location combinations when K = 2. 

Comparison of Table 3.4 with Tables 3.2 and 3.3 reveals that all of the GLRT 
detectors perform better (i.e., have higher values of <J>MIN) when there are 2 signal 
components instead of 6. The reason for this is fairly intuitive: the signal energy 
E = xHx of the signal x remains the same when K = 2, but the energy is distributed 
over a fewer number of signal components. Thus, the signal "stands out" more from 
the Gaussian noise, even when there is information mismatch. It is also interesting to 
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Case 

Detector 

r Bc sr sc B0 
1 0.7826 1 0.8851 0.5991 1 
2 0.4692 0.4407 0.5791 0.4887 0.6125 

3 0.2676 0.2689 0.3369 0.2894 1 
4 0.7826 1 0.7683 0.5619 1 
5 0.5429 0.6186 0.6471 0.5314 0.8304 

6 0.2532 0.2886 0.3877 0.3253 1 
7 0.7826 1 0.7607 0.4784 1 
8 0.7815 0.8705 0.5934 0.3901 0.8705 

9 0.5424 0.8580 0.7607 0.3914 0.8580 

10 0.2325 0.5252 0.7607 0.1873 0.5252 

11 0.7815 0.8705 0.7607 0.4357 0.8705 

12 0.5424 0.8580 0.6795 0.4046 0.8580 

13 0.2325 0.5252 0.3442 0.2047 0.5252 

Table 3.4: Values of <j)Mm for different cases of location mismatch and shape mis- 
match, assuming K = 2 signal components. 

note that the relative performances of the five detectors in Table 3.4 are exactly the 
same as the relative performances of the five detectors in Tables 3.2 and 3.3. Most 
importantly, this means that the oversampled LSM-Gabor detector is again the most 
robust among all the detectors in almost every case of information mismatch when 

K = 2. 

3.6.5    Oversampling the other linear transforms 

Given the dramatic improvement in GLRT detector robustness resulting from over- 
sampling the LSM-Gabor transform, it natural to wonder whether oversampling 
would improve GLRT robustness for any of the other three critically sampled detec- 
tors examined in this section. 

Oversampling the DBFM-Gabor transform would almost certainly improve GLRT 
robustness in the same way that oversampling the LSM-Gabor transform does. How- 
ever, calculating the oversampled DBFM-Gabor transform coefficients requires the 
calculation of the continuous time biorthogonal function for the one-sided exponen- 
tial window using an oversampled version of the Zak transform.   As yet, no work 
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in this area has been published, although manuscripts are in preparation [FZ]. It 
should be noted that an extensive amount of research has recently been published 
regarding the oversampled Gabor transform calculated via the PBFM (periodized 
biorthogonal function method), and this work will be discussed in Chapter 4. 

Oversampling the two SSTFT transforms turns out not to be advantageous. The 
reason for this is that the SSTFT is calculated using inner products. Because of 
this, the values of the SSTFT transform coefficients at the critically sampled lattice 
points remain unchanged at the corresponding oversampled lattice points. For every 
critically sampled lattice point, however, the oversampled SSTFT is evaluated at 

four neighboring lattice points on the oversampled lattice, and these neighboring 
transform coefficients are likely to have values close to the value of the transform 
coefficient at the critically sampled lattice point. The effect of this is that component 
localization is actually decreased when the SSTFT is oversampled. 

The above property of the oversampled SSTFT is best illustrated by an example. 
Consider a signal with one component at time-frequency coordinate (i, /) = (1,1), 
with one-sided exponential window having parameter A = 1. The magnitudes of 
the (1-second) rectangular-window SSTFT coefficients for this signal in the critically 
sampled and oversampled cases (along with the respective contour plots) are shown 
in Figure 3.9. 

As noted in Chapter 2, the SSTFT is a blurred version of the Gabor transform, 
and this is already noticeable in the critically sampled case (left-hand side of Figure 
3.9). However, the oversampled SSTFT is even more "blurred" than the critically 
sampled SSTFT. Figure 3.10 shows the corresponding plots for the SSTFT calculated 
with the one-sided exponential window (and no information mismatch). Again, the 
oversampled SSTFT is more blurred than the critically sampled SSTFT. 
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frequency      0 0 time 

time time 

Figure 3.9: Left-hand side: magnitudes of the critically sampled SSTFT coefficients 
(rectangular window) and corresponding contour plot for one-component signal lo- 
cated at (1,1). Right-hand side: magnitudes of the oversampled, SSTFT coefficients 
(rectangular window) and corresponding contour plot for the same signal. 
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frequency time frequency      0 0 time 

time 

Figure 3.10: Left-hand side: magnitudes of the critically sampled SSTFT coefficients 
(one-sided exponential window) and corresponding contour plot for one-component 
signal located at (1,1). Right-hand side: magnitudes of the oversampled SSTFT 
coefficients (one-sided exponential window) and corresponding contour plot for the 
same signal. 



3.7.   Detection of Unknown-Location Signal Components in the PF Framework 49 

3.7    Detection of Unknown-Location Signal Com- 
ponents in the PF Framework 

To this point, the analysis of this chapter has focused on transient signal detection 
within the PF framework of signals whose components have known locations in the 
time-frequency plane. In the "known-location" case, knowledge of signal component 
locations is used to rearrange and partition the basic model (3.19) so that the GLRT 
detector can be designed (as in (3.24)) to test whether a portion of the transform 
coefficients (represented by Ci) are zero or not. 

This section examines transient signal detection within the PF framework of 
signals whose components have unknown locations. In fact, the number of signal 
components is also assumed to be unknown. The GLRT detector derived in this 
section is based on the oversampled LSM-Gabor transform, since the latter provided 
the most robust GLRT detector in the previous section in almost every case of infor- 
mation mismatch. Recall that for the oversampled Gabor transform, the transform 
matrix is 

R = B0 = (GfG0)-
1Gf, (3.40) 

where G0 contains oversampled Gabor logons of the form 

Uli = 9mn(kA) = 9(kA - 0.5n)e^O.Sm){kA-O.5n) (3 41) 

Rewriting the transform step (3.19) of the PF framework using R = B„ gives 

z = B0G0c + B0e + w, (3.42) 

where w ~ A/"(0,2B„Bf) and where e is such that e^G0 = 0. Note, however, that 
eHG„ = 0 implies that Gf e = 0, so 

B„e   =   (Gf Go^Gf c 

=   (GfG^O 

=   0. (3.43) 

Thus, the model mismatch vector e can be disregarded in (3.42) above, giving 

z = B0G0c + w. (3.44) 

Since w ~ jV(0,2BoBf), the transformed observation z ~ j\f(B0G0c, 2B„Bf). 

The reason that e could not be similarly disregarded for calculations involving 
the LSM-Gabor transform in the previous analysis involving known signal component 
locations is that the orthogonality constraint given in (3.31) only assumed 

eHG0l = 0, 
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where the logons in G0l corresponded to the known signal component locations of 
c\. With unknown signal component locations, no such partitioning of G„ into G0l 

and Go2 is possible, so (3.43) applies and (3.44) is the model of interest. It should be 
noted that while model mismatch is disregarded in this section, information mismatch 
will play an important role in the analysis of the GLRT detector for unknown signal 
component locations (the "unknown location" or "UL" detector), as compared to 
the GLRT detector for known signal component locations (the "known location" or 
"KL" detector). 

When signal component locations are unknown, the hypothesis test for (3.44) is 
simply 

Ho:c = 0 

vs. 

Hi : c ^ 0. (3.45) 

For this hypothesis test, the logarithmic form of the GLRT is given by 

tuL — max{41ogjD!(z | c)} - 4logp0(z). (3.46) 
c 

Now, assuming that B0 is a left-inverse of G0 (which is true if there is no information 
mismatch), 

2\ogPl(z) = -MN\og2ir - log\k\ - {z - S)aA~\?- c), (3.47) 

where 
A = 2B0B? = 2(Gf Goy

x. (3.48) 

The corresponding expression for 21ogp0(z) is obtained by substituting c = 0 into 
(3.47). It is easily seen that 21ogp1(z) is maximized over c when 

c = z. 

This is to be expected, as z is a maximum likelihood estimate of c [BS90]. Thus, the 
GLRT statistic in (3.46) simplifies to 

tUL   =   2zHA~1z (3.49) 

=   lff(B0Bf)-1z (3.50) 

=   zH(G?G0)z. (3.51) 

To determine the distribution of 2, note that since z is MN-variate complex- 
Gaussian with mean B0G0c and covariance matrix 2B0B^, the vector 

( = (B0Bf )"z (3.52) 
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is also MAT-variate complex-Gaussian, but with mean (B0B^)  2B0G0c and twice 
—* 

the identity covariance matrix. In a sense, ( represents the "whitened" transform 
coefficients. Examination of the GLRT statistic (3.51) above reveals that tuL can be 
rewritten as 

tuL = (*(, (3.53) 

which means that tut, is x2-distributed with 2MN degrees of freedom and noncen- 
trality parameter 

v = (B0G0c)H(B0Bf )"1(B0G0c). (3.54) 

One interpretation of (3.53) is that tuL is simply the energy of the "whitened" trans- 
form coefficients. 

Substituting x = G0c into (3.54) reveals the dependence of the noncentrality 
parameter v on x: 

v = xHB* (B„Bf y'BoS. (3.55) 

The expression for v in (3.55) can be simplified again using the definition of B0 

(B0 = (Gf Go^Gf): 

v   =   xHG0B0x (3.56) 

=   ^GoCGfGo^Gf* (3.57) 

=   £PG.£, (3-58) 

where PG„ is the projection of G„. 

When it is in fact the case that x = G„c for some c, the expression (3.57) can be 
simplified even further: 

v   =   i*G0(GfG0)-
1G?x (3.59) 

=   cHGfG0(GfG0)-
xGfG0c (3.60) 

=   tHG"G0c 

X    X . (3.61) 

Thus, when there is no information mismatch, the noncentrality parameter of tuL is 
simply the energy E of the signal x. 
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3.8    Analysis of Unknown-Location (UL) GLRT 
Detector: Comparison With Known-Location 
(KL) Detector 

This section analyzes the performance of the UL-detector tuL given by (3.51) for the 
hypothesis test (3.45) and compares the performance of the UL-detector with that 

of the KL-detector t (which will be denoted tjcL in this section) given by (3.25) for 
some sample signals. Both the UL-detector and the KL-detector are GLRT statistics 
based on the oversampled LSM-Gabor transform (a = ß = 0.5). For convenience, the 
subscript 'o' (for "oversampled" ) will be dropped from G0 in this section, but G = G0 

will be implied throughout. Similarly, the oversampled LSM-Gabor transform matrix 

B0 will be denoted by B. 

Recall that the KL-detector assumes the signal x is of the form 

x = Gici, (3.62) 

with 

c = \ f 1 • (3-63) 

In [PF92], Porat and Friedlander showed that when the signal x is of the form x = Gc 
(but not necessarily of the form shown in (3.62)), the noncentrality parameter VKL 

of the KL-detector tRL is given by 

^L = cfGfG1ci, (3.64) 

which equals xHx if x is of the form assumed by (3.62). Thus, when the information 
about the locations of the signal components is correct, the noncentrality parameters 
of the KL-detector and the UL-detector are exactly the same, both equalling the 
energy E of the signal x. However, recall that the ^-distribution of the KL-detector 
has only 2K degrees of freedom (where K is the number of signal components), 
whereas the %2-distribution of the UL-detector has 2MN degrees of freedom. Since 
K « MN by the sparseness assumption A2, this means that when there is no 
information mismatch, the KL-detector will perform considerably better than the 
UL-detector7. 

However, note that when it is not the case that x is of the form x = Gjci, the 
noncentrality parameter VKL will not equal the energy E = xHx of x, even if x is of 

7For a given probability of false alarm and a given noncentrality parameter under Hi, the 
detection probability using either of the x2 statistics is a monotonically decreasing function of the 
number of degrees of freedom. 
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the form x = Gc. In other words, if x can be represented as x = Gc, with 

c = —* 
c2 

(3.65) 

and c2 ^ 0, the value of VKL will only be a fraction of the energy E of x. On the 
other hand VUL, as shown in (3.61), remains equal to E regardless of the locations 
of the signal components (so long as x can be expressed as x = Gc). In this case, 
there is a tradeoff for the two detectors between the fewer degrees of freedom in the 
KL-detector and the larger noncentrality parameter of the UL-detector. It is to be 
expected, then, that the relative performances of the two detectors depends on how 
accurate the assumptions are concerning the signal component locations. 

3.8.1     Simulation examples 

It would be beneficial at this point to consider some specific examples. As before, 
the underlying parameters of the model (see (3.38)) are assumed to be M = N = 8, 
L = 256, and A = ^. First, consider the signal x whose samples are given by 

x(kA) = V2e-(kA-1-Vej3*V°A-1-Vu(kA-1.5),   k = 0,1,... ,L - 1, (3.66) 

a one-component signal with one sided-exponential window and arrival time 1.5, 
modulation frequency 1.5, and decay parameter A = 1. The KL detector assumes 
that the arrival time and modulation frequency of the one-component signal are 
indeed 1.5. If this is true, then the KL detection statistic is noncentral %2-distributed 
under hypothesis Hi with 2 degrees of freedom and noncentrality parameter VKL — 
33.0103. Under hypothesis H0, the KL detection statistic is central x2-distributed 
with 2 degrees of freedom. The respective probability distributions are shown in 

Figure 3.11. 

The UL detector makes no assumptions on the arrival time and modulation fre- 
quency of the one-component signal. Thus, the UL detection statistic under hypoth- 
esis Hi is noncentral x2-distributed with 128 degrees of freedom and noncentrality 
parameter VUL = 33.0103, while under hypothesis H0 it is central %2-distributed 
with 128 degrees of freedom. The respective probability distributions are shown in 
Figure 3.12. 

Figures 3.11 and 3.12 indicate that when there is no mismatch, the KL detector 
should perform better. This is verified in Figure 3.13, where the probability of 
detection Pd for the KL and UL detectors are plotted as a function of the signal-to- 
noise ratio for a false alarm probability P/a = 0.01. The SNR was varied by changing 
the magnitude of the signal x. 
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Figure 3.11: %2 distributions, 2 degrees of freedom 
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Figure 3.12: %2 distributions, 128 degrees of freedom 
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Figure 3.13: Pd vs. SNR for Pfa = 0.01 

Suppose, however, that the assumed time-frequency location of the one-component 
signal is incorrect. This would mean that the arrival time an of the component is 
not 1.5 or that the modulation frequency ßm of the component is not 1.5 or that 
neither quantity is 1.5. Since the UL detector makes no assumptions on the loca- 
tion of the component, its performance will remain the same as long as the actual 
location of the component remains within the finite expected ranges of arrival time 
and modulation frequency (both 0 to 3.5 in this simulation example). However, the 
performance of the KL detector deteriorates the further the actual time-frequency 
coordinates of the signal are from the expected coordinates, since the KL detector 
makes use of the location information. Moreover, this deterioration is quite rapid. 
When the actual (t, /) coordinates of the component are simply (2, 2) instead of (1.5, 
1.5), the noncentrality parameter of the KL statistic under hypothesis Hi drops from 
33.0103 all the way to 3.5051. As shown in Figure 3.14, there is much less separation 
now between the distributions of the KL detector under H0 and Hi, respectively. 

Indeed, Figure 3.15 shows that the the performance of the KL detector drops 
below that of the UL detector with this minimal amount of location mismatch. 
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Figure 3.14: %2 distributions, 2 degrees of freedom 
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Figure 3.15: P<* vs. SNR for P/a = 0.01. In the mismatch case, the actual time- 
frequency coordinates of the signal component are (2, 2) instead of (1.5, 1.5). The 
UL curve is the same in either case. 
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Figure 3.16: Pd vs. SNR for Pfa = 0.001. In the mismatch case, the actual time- 
frequency coordinates of the signal component are (2, 2) instead of (1.5, 1.5). The 

UL curve is the same in either case. 

It should be clarified at this point that location mismatch for the KL detector 
means that the actual t-f coordinates of the signal component differ from the ex- 
pected coordinates (1.5, 1.5). On the other hand, location mismatch for the UL 
detector signifies that the actual t-f coordinates of the signal component do not lie 
on the oversampled Gabor lattice. 

Figure 3.16 shows the corresponding performance curves when Pfa is set to 0.001 
instead of 0.01 as in Figure 3.15. Again, the performance of the KL detector drops 
below that of the UL detector when the actual time-frequency coordinates of the 
signal component are simply (2, 2) instead of (1.5, 1.5). 

Figure 3.17 displays the ROCs, Pj. versus P/a, for the two detectors when the 
SNR is set to approximately -9.0 dB. The detection probability of the KL detector 
when there is no mismatch is essentially 1 except at the very smallest false alarm 
probabilities. However, the ROCs curve for the KL detector drops dramatically with 
the same location mismatch as above. 
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Figure 3.17: ROCs: Pd vs. Pfa for SNR « —9.0 dB. In the mismatch case, the actual 
time-frequency coordinates of the signal component are (2, 2) instead of (1.5, 1.5). 
The UL curve is the same in either case. 

A broader indication of the sensitivity of the KL detector to location mismatch 
is given by Figure 3.18, which shows the dropoff in the detection probability Pd for 
the KL detector with respect to Pd for the UL detector as the actual time-frequency 
location of the signal component varies from the expected (1.5, 1.5). It can be seen 
from Figure 3.18 that the performance of the KL detector drops below that of the 
UL detector unless the actual time-frequency coordinates of the signal component 
are exactly as expected or unless one of the coordinates is exact and the other is off 
by 0.5. 

In Figure 3.18, the values of Pd for the UL detector remain constant as long 
as the actual time-frequency coordinates of the signal component lie somewhere on 
the oversampled Gabor lattice (i.e., (t,f) is such that t = 0.5n and / = 0.5m, with 
m,n G {0,1,..., 7}). The performance of the UL detector does suffer a dropoff when 
the actual time-frequency coordinates of the signal component do not lie exactly on 
the oversampled Gabor lattice. However, this dropoff is not nearly as severe as that 
suffered by the KL detector. Figure 3.19 shows the variation in Pd for both the 
KL and UL detectors over a smaller portion of the time-frequency plane, when the 
expected time-frequency location of the signal component is (1, 1). Though Pd for 
the UL detector is no longer constant in Figure 3.19, the variation is minimal when 
compared to Pd for the KL detector. 



3.8.   Analysis: UL Detector vs. KL Detector 59 

frequency 0   0 
time 

Figure 3.18: Variation of Pj, for the KL detector as the actual time-frequency coordi- 
nates of the signal component vary from the expected (1.5, 1.5). The corresponding 
Pd for the UL detector is shaded. SNR « -9.0 dB, Pfa = 0.01. 
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Figure 3.19: Variation of Pi for the KL detector as the actual time-frequency coor- 
dinates of the signal component vary from the expected (1, 1). The corresponding 
Pd for the UL detector is shaded. SNR « -9.0 dB, Pfa = 0.01. 
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Figure 3.20: Pa vs. Pfa for SNR « -9.0 dB. In the mismatch case, the actual 
time-frequency coordinates of the signal component are (1.7, 1.7) instead of (1.5, 

1.5). 

Figure 3.20 shows the dropoff in the ROCs of the UL detector as the signal 
component's t-f coordinates vary from a no mismatch case (coordinates somewhere 
on the oversampled Gabor lattice) to a mismatch case (coordinates of (1.7, 1-7)). It 
is clear that the dropoff is not significant. 

Careful examination of the data used to generate Figure 3.19 reveals that, for 
a given component arrival time, P<* for the UL detector does not vary at all with 
component frequency, even if there is location mismatch. With this in mind, the 
variation of Pj, for the UL detector as the signal component's actual arrival time 
varies (while the frequency is fixed) is shown in Figure 3.21, which is a cross-section 
of Figure 3.19 at / = 1. 

The overall conclusion from all the simulation examples is that the UL detector, 
as one would expect, is more robust than the KL detector when there is location 
mismatch. One should only use the KL detector when one is very confident about 
the time-frequency locations of the signal components. From Figures 3.18 and 3.19, 
"very confident" can be taken to mean that the signal component locations are either 
known exactly or known to within adjacent8 coordinates on the oversampled Gabor 
lattice. Although the simulation examples above used one-component signals, the 
above conclusion is obviously applicable to multiple-component signals. 

"Adjacent" here means horizontally or vertically adjacent, not diagonally adjacent. 
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Figure 3.21: Pd vs. time for SNR » -9.0 dB, / = 1. 

3.8.2     Comparison: UL detector and energy detector 

One final question to be addressed in this section is why the UL detector provides any 
advantage over a simple energy detector when the component locations are unknown. 
This is an especially relevant question considering that the UL detection statistic 
(3.51) can be interpreted as the energy of the "whitened" transform coefficients. 

To answer this question, consider again the PF framework representation of the 
observation vector y: 

y = x + v = Gc + v. (3.67) 

The energy detector for (3.67) is simply tE = yHy. Since y ~ N(x, 21), it is clear 
that, for the hypothesis test (3.45) above, tß is central %2-distributed with 2L degrees 
of freedom under Ho and noncentral %2-distributed with 2L degrees of freedom and 
noncentrality parameter xHx = E under H\. 

Thus, the distributions tE for the hypothesis test (3.45) are essentially the same 
as the distributions of tuL given above, except that the %2-distributions for tß have 2L 
degrees of freedom, while the x2-distributions for tuL have 2MN degrees of freedom. 
Now the PF framework assumes (see assumption Al in section 3.2) that MN < L. 
Indeed, in the simulation examples of this section, MN = 64 << L = 256. Thus, 
because of the nature of the %2 distribution, the statistic tuL will always perform 
better than the statistic tß, unless the PF model (3.2) for the signal x is grossly 
inaccurate. 
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Essentially, one can conclude from the above that if an L-dimensional signal is 
known to belong to an MJV-dimensional linear subspace, it is beneficial to perform 
a linear transform on the observation to reduce the detection problem from an L- 
dimensional one to an MN-dimensional one, provided one has a reasonable knowledge 
of the linear subspace. 

3.9     Scharf-Friedlander Framework: Matched Sub- 
space Detectors 

Recently, Scharf and Friedlander [SF94] developed a generalization of the PF frame- 
work. The Scharf-Friedlander framework - which will be referred to here, naturally, 
as the SF framework - includes subspace interferences as part of its model. In other 
words, the observation y is again expressed as 

y = x+ n = Gc +n, (3.68) 

except that the noise n has distribution n ~ M(Qa, I), where QCT represents the 
subspace interference9, a does not necessarily have to have the same dimensions as 
c; thus, the interference matrix Q is assumed to be (L X s), while a is assumed to 
be (s x 1). 

Equivalently, the observation y can be expressed as 

y = Gc + Qa + v, (3.69) 

wherev~Af(0,I)10. 

Using the observation model given by (3.69), Scharf and Friedlander derived the 
GLRT statistic for the hypothesis test that was given in (3.45) above: 

H0 :c = 0 

vs. 

Hi:cV0. (3.70) 

9 Scharf and Friedlander assumed real-valued signals and real-valued noise. The extension of their 
analysis to complex-valued signals would involve similar steps to those taken in previous sections 
of this chapter. 

10Scharf and Friedlander also generalized their framework to allow the covariance matrix of v to 
be an arbitrary multiple of the identity matrix, tr2I. This generalization is a simple one, and it is 
assumed here that a2 = 1. 
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The GLRT statistic derived by Scharf and Friedlander is given by 

tsF = J^PJEGQP^, (3.71) 

where 

P^ = Q-L((Q-L)HQJr1(Qx)ir 

and 
EGQ = G(GifPiG)-1GHPj. 

Without exploring the intricacies of the detection statistic tsF-, it is interesting to 
note here that when Q = 0, tsF reduces to tuL if the transform matrix R in (3.19) is 
taken to be the pseudoinverse, R = B = (G-ffG)-1G'H. To see this, assume Q = 0, 
so that Qx = I. This makes 

Px -T 

and 
EGQ=G(GifG)-1Gif

) 

and the statistic tsF simplifies as follows: 

tsF   = y^P^EGQP^y (3.72) 

= yHG(GHG)~1GHy (3.73) 

= fHG(GifG)"1GHG(GHG)-1GH^ (3.74) 

= z^GHGz, (3.75) 

provided z = (GHG)~1GHy. Note that the form of tSF in (3.75) is identical to the 

form of tuL in (3.51). 

Thus, the analysis of the UL detector in sections 3.7-3.8 is a special case of the 
SF framework. It should be noted that Scharf and Friedlander in [SF94] did not 
attempt to apply linear TFRs to signal detection problems within their framework; 
in fact, they based their GLRT statistic on the observation y, not on any transformed 
observation z = Ry. Thus, the analysis of sections 3.7-3.8, while a special case of 
the SF framework, remains distinct from the work of Scharf and Friedlander in that 
the latter does not approach the signal detection problem from the point of view of 
linear TFRs. 

It should be noted further that Friedlander and Porat in [FP92] derived tuL as 
the expression in (3.49), but they focused immediately thereafter on the KL case, 
deriving ticL without analyzing tuL- Again, the form of tuL was derived in this paper, 
but the analysis of sections 3.7-3.8 remains distinct from the work of Friedlander and 
Porat. 
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3.10     Conclusions 

This chapter applied the discrete Gabor transform to the problem of detecting finite- 
duration, discrete-time signals. The first part of the chapter focused on the case 
where the time-frequency locations of the signal components were assumed known. In 
a comparison of GLRT detectors based on five linear TFRs for this case, it was found 
that the detector based on the oversampled LSM-Gabor transform was generally most 
robust in the presence of signal mismatch, both information mismatch and model 

mismatch. 

The second part of the chapter focused on the case where the time-frequency lo- 
cations of the signal components were assumed unknown. The GLRT detector based 
on the oversampled LSM-Gabor transform was derived for this case, and the perfor- 
mance of this "unknown location" (UL) detector was compared to the performance 
of the corresponding "known location" (KL) detector. It was found, as expected, 
that the UL detector was more robust in the presence of location mismatch. 

Two possible topics for further investigation are the application of oversampling 
to the DBFM-Gabor transform and the analysis of transform-based detection within 
the Scharf-Friedlander (SF) framework of matched subspace detection. Both of these 
issues are being researched currently [FZ, SF94]. 

3.A    Appendix:   Restrictions on vmin in Section 
3.4 

This appendix confirms the necessity of the condition p < <f> for the minimum solution 

*W = E y(l - p)(j) - ^(1 - <t>)p )   in section 3.4. 

First, recall that the original minimization problem is to find 

mini/ = mi^dci + r)HP(GlC; + e), (3A.1) 
e e 

subject to the conditions 

l"A' «-a»* (3A2) 

where XQ = GiCi. 

This is a constrained minimization problem. Letting /(e) be the expression for 
umin on the right-hand side of (3A.1), and letting h(e) be the vector-valued function 
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given by 

h1{e)   =   eHe-E + x%x0 (3A.3) 

h2(e)   =   2eHx0, (3A.4) 

—* 
the first-order necessary condition to find a vector e * that minimizes /(e) is that 3 0 
such that 

V*/(e*) + 0HVsh{e*) = 0, (3A.5) 

where 6 = (^ ). The first-order condition (3A.5) can then be combined with the two 

constraints in (3A.2) to solve for e* and 0. 

In [PF92], Porat and Friedlander performed the above calculations by expressing 
e* in terms of 0\ and &2, then expressing 02 in terms of 0i, and, finally, solving for 
0i. They found two solutions for 0\, given by 

0+   =   _i + ^ + ^(i_ fl(i_,) (3A.6) 

0-   =   _1 + ^_^(i_fl(i_,). (3A.7) 

Porat and Friedlander assumed that 0f is the solution that generates z/mtn given in 
(3.33); however, they did not check the second order conditions that determine when 
0f corresponds to a minimum. This is done below. 

—* 
The second-order necessary condition for a vector e * to minimize /(e) is that 3 0 

such that 
V|/(e*) + 0HVf£(e*) (3A.8) 

is positive semidefinite [Lue84]. In (3A.8), 0HVlh(e*) is defined as 

0HV2
sh(e*) = 01Vlh1(e*) + 02Vlh2(e*) . 

After some calculations, the matrix in (3A.8) for the above constrained mini- 
mization problem is reduced to 

2(P + M), (3A.9) 

Assuming that P is full rank and has eigenvalue decomposition P = Q^DQ, the 
matrix in (3A.9) can be rewritten 

2QH(D + 0xI)Q • (3A.10) 
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Since P is a projection matrix, its eigenvalues are real and positive (or 0). Assuming 
that the eigenvalues of P can occur arbitrarily close to 0, it is clear that the matrix 
(3A.10) is positive semidefinite only if di > 0. 

Since $ < 1, it is clear that Of > 0 only in the degenerate case11 where <f> = 1. 
The condition for 8^ > 0 is derived as follows (ignoring the degenerate case <j) = 1): 

et >       0 
■ 1 + ^ + ^(1-^(1-^) > 0 

^p(l-</>)(!-P) > 1-* 
±{i-4){i-P) > (i-ty 

til-p) > p{l-<i>) 
P < 4>. 

(3A.11) 

The inequality is preserved during the squaring operation of the fourth step because 
both sides of the inequality are positive. 

Thus, the condition p < $ is necessary in order for the expression (3.33) for vmin 

to be valid. 

11When (j> = 1, #i = 0 and vmin — 0. The expression for vmin in (3.33) was derived assuming 



Chapter 4 

Improving the Oversampled 
Gabor Transform 

4.1     Introduction 

This chapter focuses on some of the factors that comprise an effective linear TFR: 
stability in the magnitudes of the transform coefficients (referred to here as coefficient 
stability), accuracy of the representation, and computational simplicity. Section 4.2 
presents a comparison of coefficient stabilities for the five linear TFRs examined 
in the last chapter, and it is shown that the oversampled LSM-Gabor transform 
(abbreviated in this chapter as OS-LSM-GT) is extremely unstable in comparison 
with the other transforms. It is then explained how the GLRT detector based on 
the OS-LSM-GT was able to outperform all the others in the analysis of Chapter 3 
despite this instability. 

The remainder of the chapter is devoted to investigating methods of improv- 
ing the coefficient stability of the OS-LSM-GT. Section 4.3 examines five methods 
designed to improve the stability of the OS-LSM-GT while remaining within the 
Porat-Friedlander (PF) framework: 

• rank reduction (via singular value decomposition) 

• regularization 

• the principal components method [TKK82, TK82] 

• solution with energy constraints 

• solution with transform "whitening." 

68 
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Section 4.4 compares all five of the above methods with the original OS-LSM-GT 
by examining each method's transform coefficients for some simple signals. Three 
performance measures are used for the comparison, all of which measure in different 
ways the accuracies of the various methods. 

Sections 4.5-4.7 investigate a different approach toward calculating the oversam- 
pled Gabor transform coefficients. Section 4.5 explains the framework of Wexler 
and Raz (to be called the WR framework), and it examines the assumptions of 
this framework in comparison to the assumptions of the PF framework. Section 4.6 
presents several methods of calculating the oversampled Gabor transform coefficients 
within the WR framework. Section 4.7 compares the WR methods of calculating the 
oversampled Gabor transform to the methods of sections 4.5-4.7, using the same 
performance measures and signals as presented in section 4.4. 

Finally, section 4.8 summarizes the conclusions of this chapter and presents some 
ideas for future work. 

4.2     Stability Analysis of TFRs in the PF Frame- 
work 

This section compares the stability of the five linear TFRs compared in section 
3.6 of the last chapter. Within the PF framework, consider the representation of a 
transformed observation vector z, derived from a signal x in complex, white Gaussian 
noise v, assuming a generic transform matrix R: 

z = B.y = Rx + Kv, (4.1) 

where v ~ W(0,21). It is easy to see that z ~ Af(R.x, 2RRH). Thus, the terms in 
the covariance matrix 2HHH determine how much the magnitudes of the transform 
coefficients within the transform vector z are likely to vary with different realizations 
of the noise. The latter characteristic will be referred to here as the coefficient 
stability of the transform. "Coefficient stability" will also be used to refer to the 
relative variation in the transform coefficient magnitudes with small changes in the 
signal. 

The five linear TFRs examined in section 3.6 - the critically sampled DBFM- 
Gabor transform with one-sided exponential window (with transform matrix T), the 
critically sampled LSM-Gabor transform with one-sided exponential window (Bc), 
the critically sampled SSTFT with rectangular window (Sr), the critically sampled 
SSTFT with one-sided exponential window (Se), and the oversampled LSM-Gabor 



70 Chapter 4.   Improving the Oversampled Gabor Transform 

transform with one-sided exponential window (Be) - are examined for coefficient 

stability in Table 4.1 below, which presents eight measures of element size for the 
covariance matrices corresponding to the various transforms: 

1. the condition number, the ratio of the largest singular value of the covariance 

matrix to the smallest 

2. the 2-norm, the largest singular value of the covariance matrix 

3. the 1-norm, the largest column sum of the covariance matrix 

4. the oo-norm, the largest row sum of the covariance matrix 

5. the Frobenius norm, the square root of the sum of the squares of all the elements 

in the covariance matrix 

6. the maximum diagonal element of the covariance matrix, corresponding to the 
maximum variance of any one transform coefficient in z 

7. the average of the diagonal elements in the covariance matrix, corresponding 
to the average variance of the transform coefficients in z 

8. the minimum diagonal element of the covariance matrix, corresponding to the 
minimum variance of any one transform coefficient in z. 

With all of the above measures, smaller values indicate greater coefficient stability 

in the corresponding transform. 

The transform matrices in Table 4.1 use the same parameters within the PF 
framework that were assumed in the last chapter: M = N = 8, L = 256, and 
A = ^ (see equation (3.2) to review the meanings of these parameters). All of 
the transform matrices were created to detect signal components with one-sided 
exponential windows having decay parameter A = 1. 

Examination of Table 4.1 reveals that the critically sampled transforms, compris- 
ing the first four columns of the table, are all fairly stable, with the transform based 
on Sr (the SSTFT with rectangular window) an order of magnitude more stable than 
the others1. However, the elements of the covariance matrix 2B0Bf corresponding to 
the OS-LSM-GT have extremely large magnitudes, indicating that the oversampled 
LSM-Gabor transform is very unstable. Note that the critically sampled LSM-Gabor 
transform based on Bc is relatively stable by comparison. 

xFor the critically sampled RW-SSTFT, the covariance matrix 2SrSf is a multiple of the identity 
matrix. 
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Measure 
Covariance Matrix 

2rrH 2BCB? 2SrS? 2SeSf 2B0Bf 
condition number 18.6279 18.6279 1 18.6279 2.209el0 
2-norm 0.3292 0.3072 0.0625 0.2368 2.656e8 
1-norm 0.4018 0.3798 0.0625 0.3034 4.704e8 
oo-norm 0.4018 0.3798 0.0625 0.3034 4.704e8 
Frobenius norm 1.0456 0.9610 0.50 0.6306 5.820e8 
max(diag(-)) 0.1098 0.1046 0.0625 0.0644 7.512e7 

avg(diag(-)) 0.1098 0.0992 0.0625 0.0632 2.382e7 
min(diag(-)) 0.0968 0.0814 0.0625 0.0558 2.926e4 

Table 4.1: Stability of coefficient estimates, M=N=8, L=256, A = ^ 

The instability in the OS-LSM-GT occurs even if it is performed on a signal 
without noise, because the pseudoinverse 

B0 = (Gf G^Gf 

contains the inverse (G^G0)
_1 by definition. Indeed, the covariance matrix 2B0Bf 

simplifies to 2B0Bf = 2(Gf G0)
_1, so the source of instability is the same whether 

there is Gaussian noise added or not. The following example illustrates the lack of 
coefficient stability in the OS-LSM-GT. 

Consider a one-component signal with one-sided exponential window (decay pa- 
rameter A = 1) and (t,f) coordinates (1, 1). The magnitudes of the OS-LSM-GT 
coefficients are shown in Figure 4.1. Notice that when there is no location mismatch, 
the coefficient at (1, 1) is perfectly represented. 
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frequency 0    0 

Figure 4.1:   Magnitudes of oversampled LSM-Gabor coefficients of one-component 
signal, located at (1, 1). 

Now consider the magnitudes of the OS-LSM-GT coefficients of the signal shown 
in Figure 4.2, where the time coordinate of the signal component has been changed 
very slightly from 1 to 1.05. Ideally, the transform coefficients should not change 
very much from those depicted in Figure 4.1. However, the vertical axis of Figure 4.2 
indicates that the calculated transform coefficients are now in the thousands. This 
is a vivid illustration of the lack of coefficient stability in the OS-LSM-GT: a slight 
change in the parameters of the signal produces a drastic change in the transform 
coefficients2. In fact, the OS-LSM-GT coefficients will only be on the same order of 
magnitude as the actual coefficients of the signal if there is no arrival-time mismatch 
whatsoever. It is very impractical to assume that the latter will be the case, so the 
need to modify the OS-LSM-GT to improve its coefficient stability is obvious. 

It should be explained at this point why the GLRT detector based on the OS- 
LSM-GT proved to be more robust in the presence of mismatch than the other four 
detectors in the analysis of the Chapter 3, given the lack of coefficient stability of 
the OS-LSM-GT in the presence of mismatch. This is best explained using singular 
value decomposition. 

2It should be noted that the instability of the OS-LSM-GT is not as severe when there is 
frequency mismatch. Thus, this and future examples in this dissertation focus on cases of arrival- 
time mismatch. 
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frequency 0    0 

Figure 4.2:   Magnitudes of oversampled LSM-Gabor coefficients of one-component 
signal, located at (1.05, 1). 

The singular value decomposition (SVD) of an n x p matrix A is given by 

A = USVH , (4.2) 

where U (nxp) and V (pxp) are unitary and where £ is a diagonal matrix containing 
the singular values o~i of A. When A has small singular values, the elements of A-1 

will be large. 

Suppose then that the SVD of G„ is given by 

G0 = UG.EQ.Vg. 

Then B0 is given by 

(4.3) 

= (GfGO^Gf 
= (VGOSG0UGUGOSGOVGJ-1VGOSGOUGO 

= (VGoS
2

G VgJ^VcEG.Ug. 
= vGosG

2vg vGosGougo 

= VG.EäUg.. (4.4) 

Thus, the singular values of B0 are the inverses of the singular values of G0. If 
G0 has any small singular values, then the corresponding singular values of B„ will 
be large. When G0 contains oversampled Gabor logons with one-sided exponential 
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windows (parameter A = 1), the smallest singular value of G„ is approximately 
0.000087. This leads to large elements in B0, which produces the instability in the 
OS-LSM-GT noted above. 

However, the GLRT statistic t in the PF framework is formed by taking the 
energy of the "whitened" transform coefficients (: 

t = c*c, 

where f = (B0Bf )-*B0y. Consider, then, the SVD of the matrix W = (B0Bf )~^B0 —* 
used to form (: 

W   = (B0Bf)""B0 

= (GfG^GfGo^Gf 
= (GfG0)-*Gf 
= (VG.SQ2VgJ-*VG.EG.Ug- 

= Va.S^Vg VG.Eo.Ug. 

= VG.IUgo. (4.5) 

Thus, the singular values of W are all 1, and the whitened transform coefficients are 
stable. The above analysis applies to any of the GLRT detectors, regardless of the 
underlying transform matrix R: all the singular values of the "whitened transform 
matrix" WR are 1. Thus, the process of whitening the transform coefficients causes 
all of the GLRT statistics to be equally stable. With stability issues no longer a 
factor, the favorable properties of the OS-LSM-GT should surface (and they do, as 
was demonstrated in the last chapter). 

Outside the realm of detection problems, however, there are other desirable qual- 
ities in a linear TFR. Some of these qualities include: low reconstruction error, ac- 
curate representation of the time-frequency content of signal components, and good 
localization (in the time-frequency plane) of signal components. The "transform- 
whitened" OS-LSM-GT, while it has good coefficient stability and good accuracy, 
has only fair localization and high reconstruction error. The next section investi- 
gates transform whitening and several other modifications to the OS-LSM-GT in 
terms of their ability to improve the coefficient stability of the OS-LSM-GT while 
also possessing the qualities listed above. 
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4.3    Methods of Improving Coefficient Stability 
in the OS-LSM-GT 

4.3.1    Rank reduction 

Rank reduction is an SVD-based method for improving the calculational stability 
of any operation involving matrix inversion. As the pseudoinverse in the OS-LSM- 
GT contains a matrix inverse, rank reduction can improve its coefficient stability. 
Consider the representation of the OS-LSM-GT of an observation y, using the SVD 
of G0 given in (4.3): 

z   =   B0y 

=   VGoSäUg0jT. (4.6) 

For convenience, suppose that the MAT singular values <Ji along the diagonal of EQO 

are ordered from largest to smallest, so that &\ > a2 > ... > CTMN ■ The correspond- 
ing MN singular values Si along the diagonal of EQ

1
 are then ordered in reverse as 

5i 5: s2 5: • • • ^ SMN j since S{ = —. 

Given the above notation and given r < MN, the rank-r (reduced-rank) approxi- 
mation of z is given by 

* = VG.(Eä)rUg.»> (4.7) 

where (SQ )r is obtained from SQ
1
 by setting 5r+i = sT+2 = ... = SMN = 0. It is 

well-known [TKK82, TS89] that (EQ
1
 )r is the best rank-r approximation of EQO, in 

the sense that 
IISä-CSäVHIISGl-AH (4.8) 

for all rank-r matrices A. The norm in (4.8) is the Frobenius norm described in the 
previous section. 

The process of rank reduction increases the coefficient stability of the OS-LSM- 
GT by discarding the small singular values in EQO (or, equivalently, the large singular 
values in EQ

1
 ) that cause the instability. Of course, there is a tradeoff involved in the 

process of rank reduction: as the rank r decreases, the stability of the OS-LSM-GT 
increases, but the mean-squared error \\z — y\\ (which, by the definition of the LSM, 
is minimized when there is no rank reduction) increases. Scharf [Sch91, TS89] calls 
this a bias-variance tradeoff. 

The bias-variance tradeoff makes it important to choose the rank r of the reduced- 
rank solution carefully. Unfortunately, although some systematic methods of choos- 
ing r have been proposed [Sch91, section 9.16], the choice of r is essentially ad hoc. 
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Consider now Figure 4.3, which shows the rank-reduced OS-LSM-GT of the sam- 
ple signals in the previous section. For convenience, the signal with (i, /) coordinates 
(1, 1) will be referred to from now on as Signal 1, while the signal with (t,/) coor- 
dinates (1.05, 1) will be referred to as Signal 2. The rank was chosen to be r = 42 
(recall that MN = 64) for the plots of Figure 4.3. On the left-hand side of Figure 
4.3, note that the rank-reduced transform coefficients of Signal 1 (no location mis- 
match) are a blurred version of the original OS-LSM-GT coefficients, but the one 

signal component is clearly depicted and centered at the correct (i, /) coordinates. 
Of course, rank reduction is not actually necessary for Signal 1, as the (unmodified) 

OS-LSM-GT coefficients already represent the desired solution. 

On the right-hand side of Figure 4.3, note that the rank-reduced transform coef- 
ficients of Signal 2 (small arrival-time mismatch) are of the same order of magnitude 
as the actual signal component magnitude (which is 1). However, although the trans- 
form coefficients peak at the correct arrival-time (t = 1), they do not peak at the 
correct frequency (/ = 1); instead there seem to be three components in the reduced- 
rank solution, none of them centered at (1, 1). Changing the value of r changes the 
relative magnitudes of the reduced-rank transform coefficients, but no value of r ever 
produces one peak at the correct (t, f) coordinates. Thus, while greater stability is 
attained in the process of rank reduction, the sacrifice in accuracy is too great, at 

least for this simple example. 

4.3.2    Regularization 

Regularization is a method that attempts to improve the coefficient stability of the 
OS-LSM-GT by prescribing a penalty for high-frequency energy while finding the 
least-squared-error transform coefficients. This penalty takes the form of constraints 
on the signal x = G0c, so regularization is a problem in constrained least squares 

(CLS) [LHW94, Sch91]. 

To see how the constraints are imposed, recall that for the observation y = G0c+n 
within the PF framework, the LSM finds the solution c that minimizes the squared- 

error 
||»-G0c||, 

where the norm is the 2-norm for vectors. Regularization seeks to find a "com- 
promise" solution between the minimum squared error solution and a maximally 

smoothed solution satisfying 
HGoc=0, (4.9) 

where H performs highpass filtering on the signal x = G0c. 
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time time 

Figure 4.3: Left-hand side: magnitudes and contour plot of reduced-rank OS-LSM- 
GT coefficients of one-component signal, located at (1, 1). Right-hand side: magni- 
tudes and contour plot of reduced-rank OS-LSM-GT coefficients of one-component 
signal, located at (1.05, 1). The rank reduction is performed at r = 42. 
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The highpass filtering operation is implemented by setting the elements of H 
equal to the samples of a discrete-time highpass filter h[k] as follows: 

*,-{*-'■ £*°. («o) 
Thus, the kth element of the vector Hi is given by 

X>[*-MI, 
1=0 

which is the familiar discrete-time convolution sum. 

The CLS problem arising from regularization, then, is 

mm lljr - G0c\\ + Ares||HC0c(|. (4.11) 
c 

The solution to (4.11) is given by 

c = z = (G?G„ + AregGf H^G«)-1^, (4.12) 

where the regularization parameter Xreg controls the degree of solution-smoothing. 
When XTeg —> 0, there is no smoothing and the CLS solution is the same as the 
unconstrained LSM solution. When Xreg —> oo, smoothing is dominant but the CLS 
solution loses accuracy. 

Figure 4.4 below illustrates the use of regularization on Signal 2. Application of 
regularization to Signal 1 is unnecessary, as the unconstrained LSM solution (XTeg = 
0) gives the desired result. The highpass filter h[k] used to generate H is an 8th- 
order, recursive IIR filter with stopband frequency fs = 4 Hz. The choice of fs = 4 
Hz makes use of the PF framework assumption that the signal does not have any 
frequency components above 3.5 Hz in the oversampled case. 

In the top part of Figure 4.4, the transform coefficients are generated using 
Ares = 10, signifying a minimal amount of smoothing. Consequently, the solution 
resembles the unconstrained LSM solution, but the transform coefficient magnitudes 
are one order of magnitude smaller. Even with this minimal amount of smoothing, 
the transform localizes the one signal component, although to the wrong (t, f) coor- 
dinates ((1, 2) instead of (1, 1)). In the middle part of Figure 4.4, Are3 = 104. With 
this amount of smoothing, the transform coefficient magnitudes are only one order 
of magnitude larger than the actual signal component magnitude of 1; moreover, the 
transform localizes the one signal component to (1, 1.5), which is adjacent to the 
ideal location of (1, 1) (recall that the actual (i, /) coordinates of the signal compo- 
nent in Signal 2 are (1.05, 1)). In the bottom part of Figure 4.4, Xreg = 105, which 
produces transform coefficient magnitudes on the same order of magnitude as the 
actual signal component magnitude. However, the corresponding contour plot shows 
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® 1000 
3 

Figure 4.4: Regularized OS-LSM-GT coefficients of one-component signal, located 
at (1.05, 1). Top: coefficient magnitudes and contour plot for \Teg = 10. Middle: co- 
efficient magnitudes and contour plot for \reg = 104. Bottom: coefficient magnitudes 
and contour plot for Xreg = 105. 



80 Chapter 4.   Improving the Oversampled Gabor Transform 

that the transform coefficients no longer localize the signal component accurately; in 
fact, they do not even localize to one signal component. 

In the process of regularization, then, there is a tradeoff - controlled by the value 
of XTeg - between smoothing and accuracy. However, it is clear from the plots of 
Figure 4.4 that no value of Xreg produces transform coefficient magnitudes on the 
same order of magnitude as the actual signal component and localizes the signal 
component to the correct (t, f) coordinates. Moreover, in many problems one does 
not know what the "correct" solution should be, so the proper selection of Xreg is 
something of an ad hoc process, just as the selection of the rank r in rank reduction 
is somewhat ad hoc. 

4.3.3    Principal components method 

The principal components method (PCM), first proposed by Tufts, Kumaresan, 
and Kirsteins [TKK82, TK82], also uses rank reduction, but as a preprocessing tool 
rather than as a direct means of improving the coefficient stability of the OS-LSM- 
GT. The PCM prescribes the use of the observation vector y = G0c + v to form a 
forward-backward linear prediction (FBLP) data matrix. For a length L observation 
vector y, the FBLP matrix Y is given by 

y[n] 
y[n + 1] 

y[L] 
yH[i] 
yHm 

y[n - 1] 
y[n] 

y[L-i] 
yHm 
yHm 

yB[L-n + l]   yH[L-n + 2]   .. 

y[i] 
y[2] 

y[L-n + l] 
yH[n] 

yH[n + 1] 

yH[L] 

(4.13) 

where n is the assumed length of an adaptive linear prediction filter. The dimensions 
of Y are ([2L - In + 2] x n). 

Now consider the SVD of Y: 

H UySyVf (4.14) 

The principal components method approximates Y using the reduced-rank matrix 

(SY),: 
Yr = UY(£Y),V£ . (4.15) 
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Figure 4.5: Comparison of one-component signal located at (1.05, 1) and its rank-1 
approximation using PCM (filter length 8). Only the real parts of the time histories 
are shown. 

The r singular values that are not discarded correspond to the principal components 
of Y (or y). Since there is a one-to-one correspondence between a data vector and 
its FBLP data matrix, the approximate observation yT can then be reconstructed 
from YP. Thus, the OS-LSM-GT with PCM is given by 

B0yT (4.16) 

The PCM improves the coefficient stability of the OS-LSM-GT indirectly, by 
"simplifying" the observation vector y so that the transform is performed on the 
most meaningful portion of the observation data. If y is derived from a signal with 
k components, it is natural to approximate y using PCM by yT, with r = k. 

Figures 4.5 and 4.6 illustrate the application of PCM to the OS-LSM-GT of Signal 
1 and Signal 2. The filter length in (4.13) was taken to be 8, and the observation 
vector y was approximated using just the first principal component. Figure 4.5 
depicts the real parts of the time histories of Signal 2 and of the rank-1 approximation 
to Signal 2. Because the largest singular value in Sy is much larger than the other 
seven singular values, there is little difference in approximating yby its first principal 
component. The major difference evident in the approximation is that the jump 
discontinuity of the transient signal component appears "smoother." 
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Figure 4.6: Left-hand side: magnitudes and contour plot of OS-LSM-GT coefficients 
for rank-1 approximation of signal located at (1,1). Right-hand side: magnitudes and 
contour plot of OS-LSM-GT coefficients for rank-1 approximation of signal located 
at (1.05, 1). 
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Figure 4.6 shows the coefficient magnitudes and contour plots of the OS-LSM- 
GT, performed on the rank-1 approximations of Signal 1 (left-hand side) and Signal 
2 (right-hand side). Recall that the OS-LSM-GT applied to Signal 1 without PCM 
produces a completely accurate and localized solution; however, the OS-LSM-GT 
applied to the rank-1 approximation of Signal 1, while fairly localized, is no longer 
accurate. The OS-LSM-GT applied to the rank-1 approximation of Signal 2 produces 
coefficient magnitudes one order of magnitude closer to that of the actual signal 
component than the coefficient magnitudes produced by applying the OS-LSM-GT 
to Signal 2 directly; however, the localization is again inaccurate. Thus, as with 
rank reduction and with regularization, the principal component fails to produce an 
accurate and localized modification of the OS-LSM-GT of Signal 2. 

4.3.4    LSM solution with energy constraints 

While regularization solves a CLS problem with a linear equality constraint, the 
energy-constrained LSM (EC-LSM) solves a CLS problem with a quadratic in- 
equality constraint: 

_    nun   ||y-G0cl|, ^ 

subject to   ||c|| < EQ , 

where EQ is the maximum allowable energy of the transform coefficient vector c. 
Thus, the EC-LSM attempts to find the least squares estimate of c among all vectors 
that satisfy the energy constraint. At the very least, this prevents the calculation of 
transform coefficients whose magnitudes are several orders of magnitude above the 
actual signal component magnitudes (as happens with the unmodified OS-LSM-GT). 
However, the EC-LSM does require fairly accurate a -priori knowledge of EQ. 

The solution of (4.17) is given in [GL83, section 12.1] and involves Lagrange 
multipliers and SVD; the algorithm will not be repeated here. Figure 4.7 illustrates 
the application of the EC-LSM to Signal 2, using EQ = 2 (the actual energy of the 
coefficient vector for Signal 2 is 1) 3. In Figure 4.7, note that the magnitudes of 
the transform coefficients are of the same order of magnitude as that of the actual 
signal component; also note that the transform coefficients are localized to one main 
component located near the ideal (t, f) coordinates ((1, 0.5) instead of (1, 1)) and to 
several smaller components with correct arrival times (= 1) but incorrect frequen- 
cies. Thus, while the EC-LSM provides a better solution than any of the methods 
mentioned thus far, with good localization and accurate coefficient magnitudes, it 

3Application of the EC-LSM to Signal 1 produces a solution identical to the unconstrained 
OS-LSM-GT coefficients, because the latter solution produces 0 squared-error while satisfying the 
energy constraint. 
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Figure 4.7: Magnitudes and contour plot of EC-LSM coefficients for signal located 
at (1.05, 1). 

still does not provide a completely accurate location for the signal component in 
Signal 2. 

4.3.5    LSM solution with transform "whitening" 

The final method of improving the OS-LSM-GT that will be examined in this section 
is the use of the "whitened" transform vector (, defined previously as 

C   =   (BoBf )-*z 
=   (GfG0)i*, 

in place of the "unwhitened" transform vector z. 

(4.18) 

(4.19) 

As noted in section 3.7, the covariance matrix of £ is 21 (hence the term, "whit- —* 
ened" transform vector). And as derived in section 4.2, the singular values of ( are 
all 1. Thus, whitening the transform greatly increases the coefficient stability of the 
OS-LSM-GT. 

However, there is a blurring effect that accompanies multiplication by the whiten- 
ing matrix (B0B^)~2. This blurring is nonexistent if the transform basis functions 
are orthogonal (the Gabor logons are highly nonorthogonal, especially in the over- 
sampled case; this is true regardless of the window function, as the Gabor expansion 
always contains several logons that have the same arrival time but different frequen- 
cies). 
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Figure 4.8: Left-hand side: magnitudes and contour plot of whitened OS-LSM-GT 
coefficients for signal located at (1, 1). Right-hand side: magnitudes and contour 
plot of whitened OS-LSM-GT coefficients for signal located at (1.05, 1). 

Figure 4.8 illustrates the effectiveness of the whitened OS-LSM-GT. The left- 
hand side of Figure 4.8 shows the magnitudes and corresponding contour plot of 
the whitened OS-LSM-GT coefficients for Signal 1. Note that while these plots 
are a blurred version of the corresponding unwhitened OS-LSM-GT coefficients, the 
signal component is still fairly well-localized and still represented accurately. The 
right-hand side of Figure 4.8 shows the magnitudes and corresponding contour plot 
of the whitened OS-LSM-GT coefficients for Signal 2. Unlike any of the methods 
mentioned above, transform whitening localizes the one signal component to the 
ideal (t, /) coordinates (1, 1), even though there is some blurring. 

The whitened OS-LSM-GT can be combined with the PCM for even more effec- 
tive results. Figure 4.9 shows the magnitudes and corresponding contour plots of the 
whitened OS-LSM-GT coefficients for the rank-1 approximations of Signals 1 and 
2. Examination of the four plots reveals that the whitened OS-LSM-GT, when used 
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Figure 4.9: Left-hand side: magnitudes and contour plot of whitened OS-LSM-GT 
coefficients for rank-1 approximation (using PCM) of signal located at (1, 1). Right- 
hand side: magnitudes and contour plot of whitened OS-LSM-GT coefficients for 
rank-1 approximation (using PCM) of signal located at (1.05, 1). 

with the PCM, shows very little sensitivity to the shift in component arrival time 
between Signals 1 and 2. 

Note that the whitened OS-LSM-GT is somewhat similar to the oversampled 
SSTFT with either rectangular window or one-sided exponential window (see Figures 
3.9 and 3.10), in that all three of the transforms provide fairly accurate but not very 
localized representations of the signal component. 
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4.4    Performance Analysis of Modifications to the 
OS-LSM-GT 

This section quantifies the abilities of the five modifications to the OS-LSM-GT 
mentioned above to represent accurately some simple signals. Three performance 
measures will be used, each of which measures different aspects of the accuracies of 
the respective modifications. The analysis will be performed on three signals: Signal 
1, Signal 2, and a combination of Signal 2 with noise. 

4.4.1     Performance measures 

The three performance measures that will be used in the analysis are as follows: 

1. the normalized reconstruction error (NRE), derived from the reconstructed 
signal y = G0c = G0z: 

NRE = llGf-^< . (4.20) 
\\y\\ 

NRE measures how accurately the transform coefficients z can reconstruct the 
observation y. NRE > 1 generally indicates poor reconstruction accuracy (the 
norm of the error is greater than the norm of the original observation if this is 
the case). 

2. the concentration (CONC) of the transform coefficients: 

CONC = ^? , (4.21) 
z"z 

where z„ig is comprised of any transform coefficients whose (£, /) coordinates 
are at or adjacent to the (t,f) coordinates of the actual signal components. 
For Signal 1, for example, zsig is comprised of the transform coefficients with 
coordinates (0.5, 0.5), (0.5, 1), (0.5, 1.5), (1, 0.5), (1, 1), (1, 1.5), (1.5, 0.5), 
(1.5, 1), and (1.5, 1.5). CONC measures how well the transform coefficients are 
localized to the actual signal component locations by taking the ratio of the 
energy of the transform coefficients at or near the supposed (2, /) coordinates 
of the actual signal components to the energy of all the transform coefficients. 
CONC= 1 indicates perfect localization; CONC ~ 0 indicates poor localiza- 
tion (i.e., the component is localized inaccurately, or the component is not 
localized). 
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3. the correlation coefficient (CC) between the transform coefficients and the ac- 
tual signal component locations. This is defined in [GDL94] in terms of the 
actual transform coefficient magnitudes dmn = \cmnl and the estimated trans- 
form coefficient magnitudes dmn = \c\nn\ (recall that in the Gabor expansion 
(2.31), m corresponds to frequency and n corresponds to time): 

M-1 N-l                                  M-1 N-l           M-1 N-l ^ 

>nr/HT   m=0 n=0 m=0 n=0 m=0 n=0   

1 
M-1 N-l [M-1 N-l          ] 

Z-i    Lu ^mn-Jäff ^ ]C dmn 

m=0 n=0 Lm=0 n=0           J 

Af-lJV-1 

m=0 n=Q 

M-1 N-l  ^ 

,TTI=0   Tl=0 

(4.22) 
It is necessary to use the coefficient magnitudes in (4.22) instead of the complex- 
valued coefficients themselves because CC is defined for real-valued coefficients. 
CC measures the similarity between dmn and dmn. It is well known that 
— 1 < CC < 1; CC= 1 indicates that d and d are perfectly correlated, while 
CC ~ 0 indicates that d and d are uncorrelated. 

4.4.2    Analysis results 

Table 4.2 below lists the values of the three performance measures attained by the 
OS-LSM-GT and by several of its modifications when applied to Signal 1. Recall 
that the samples of Signal 1 are given by 

x[k] = x(kA) = V2e-V°A-Vei2*kAu{kA-l),   k = 0,1,... ,L - 1, (4.23) 

with A = ^. Signal 1 is thus a one-component signal with one-sided exponential 
window (parameter A = 1) located at (t,f) coordinates (1, 1). The transforms and 
modifications included in Table 4.2 are as follows: 

1. the OS-LSM-GT (without modification) 

2. the OS-LSM-GT with rank reduction (symbol: RR), using rank r = 42 

3. the OS-LSM-GT with regularization (symbol: REG), using the highpass filter 
described in subsection 4.3.2 above and regularization parameter Xreg = 104 

4. the OS-LSM-GT with the principal components method (symbol: PCM), us- 
ing a rank-1 approximation (i.e., only the first principal component) of the 
observation y 
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5. the OS-LSM-GT with energy constraints (symbol: EC), using an energy con- 
straint of E0 = 2 on the energy of the coefficient vector c 

6. the OS-LSM-GT with transform whitening (symbol: TW) 

7. the OS-LSM-GT with transform whitening and with the principal components 
method (symbol: TW-PCM), using a rank-1 approximation of y 

8. the oversampled SSTFT with 1-second rectangular window (symbol: OS-STFT- 
Rl) 

9. the oversampled SSTFT with 0.5-second rectangular window (symbol:   0S- 
STFT-R2) 

10. the oversampled SSTFT with one-sided exponential window having parameter 
A = 1 (symbol: OS-STFT-EW). 

Note that three forms of the oversampled SSTFT are included for comparison with 
the OS-LSM-GT and its various modifications. 

Transform 
Performance measure 

NRE CONC CC 
l.OS-LSM-GT e 1 1 
2.RR 0.0015 0.8846 0.7436 
3.REG 0.7571 0.5923 0.2426 
4.PCM 0.3540 0.5308 0.1703 
5.EC e 1 1 
6.TW 10.2770 0.7701 0.6199 
7.TW-PCM 9.4307 0.7299 0.5256 
8.0S-STFT-R1 2.6018 0.7864 0.4994 
9.0S-STFT-R2 1.2440 0.6334 0.4326 

10.OS-STFT-EW 3.1407 0.7124 0.5881 

Table 4.2: Comparison of performance measures for various transforms of Signal 1. 
This is the no mismatch case. Any value of NRE less than 10-9 is denoted by e. 

The values of the performance measures in Table 4.2 confirm many of the obser- 
vations of the previous section. Note that Signal 1 does not contain any information 
mismatch, so the OS-LSM-GT performs perfectly well for this case. A few observa- 
tions can be made about the performances of the other transforms and modifications: 
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• The energy-constrained (EC) coefficients are the same as the (unmodified) OS- 
LSM-GT coefficients for no-mismatch signals such as Signal 1. 

• RR performs quite well, since it modifies the already perfect OS-LSM-GT 
coefficients. 

• REG and PCM both have low CC values: REG, because there is too much 
smoothing; and PCM, because therank-1 approximation creates an information 
mismatch although there is none in the original signal. 

• TW and TW-PCM localize the component accurately (note the high CONC 
and CC values) but are extremely inaccurate in reconstructing the signal (very 

high values of NRE). This is not surprising, as the process of transform whiten- 
ing increases coefficient stability at the expense of reconstruction accuracy. 

• The SSTFTs all perform about the same, with relatively accurate localization 
but poor reconstruction accuracy. 

Table 4.3 below lists the values of the three performance measures attained by 
the same ten transforms as in Table 4.2 when applied to Signal 2. The time samples 

of Signal 2 are given by 

x[k] = x(kA) = V2e-^*A-1-os)e»'2,rt*A-1-O5VJbA-1.05)>   Jb = 0,1,... ,1-1,   (4.24) 

with A = ^. Signal 2 is thus a one-component signal with one-sided exponential 
window (parameter A = 1) located at (t,f) coordinates (1.05, 1). Because Signal 
2 represents a very slight modification of Signal 1, the actual transform coefficient 
magnitudes dmn are assumed to be the same as those for Signal 1: 

Recall that m = n = 2 in the Gabor expansion with a = ß = 0.5 corresponds to 
(t, /) coordinates of (1, 1). 

The values of the performance measures in Table 4.3 again confirm many of the 
observations of the previous section: 

• The OS-LSM-GT still produces a small reconstruction error (which it will al- 
ways do by definition), but it no longer localizes the signal component perfectly 
or even satisfactorily. Figure 4.2 from section 4.2 confirms this observation. 
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Transform 
Performance measure 

NRE CONC CC 
l.OS-LSM-GT 0.0951 0.5027 0.2939 
2.RR 0.1269 0.3949 0.1971 
3.REG 0.7564 0.6745 0.3223 
4.PCM 0.3560 0.6867 0.3605 
5.EC 0.1264 0.5623 0.1125 
6.TW 10.0222 0.7029 0.4885 
7.TW-PCM 9.5981 0.7389 0.5445 
8.0S-STFT-R1 2.5792 0.7657 0.4836 
9.0S-STFT-R2 1.2563 0.5908 0.3885 

10.OS-STFT-EW 3.0490 0.7000 0.5682 

Table 4.3: Comparison of performance measures for various transforms of Signal 2. 
There is a small arrival time mismatch. 

• None of the modifications to the OS-LSM-GT suggested in section 4.3 localize 
the signal component accurately, with all of them producing CC values below 
0.5 except TW-PCM. 

• The values of the performance measures for the SSTFTs of Signal 2 all remain 
about the same as the values for Signal 1. This is not surprising, as the SSTFT 
is an inner-product-based transform whose values should not change very much 
with the slight modification from Signal 1 to Signal 2. 

Table 4.4 below lists the values of the three performance measures attained by 
the same ten transforms when applied to Signal 2 with complex Gaussian noise 
(~JV(0,1)) added in. The actual transform coefficient magnitudes dmn are still 
assumed to be the same as those for Signal 1 (see (4.25)). 

It is clear from the first several rows of Table 4.4 that neither the OS-LSM-GT 
nor most of the modifications suggested in section 4.3 are able to localize the signal 
component with any great degree of accuracy. The SSTFTs and the TW-PCM 
provide fairly accurate localization of the signal component, but - as is the case with 
all three examples - they do not provide accurate reconstruction of the signal from 
the transform coefficients. 

The following general conclusions can be drawn from the results of this section 
and the observations of the previous section for oversampled linear TFRs within the 
PF framework: 
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Transform 
Performance measure 

NRE CONC CC 
l.OS-LSM-GT 0.7628 0.3770 0.2650 
2.RR 0.8191 0.1963 0.0427 
3.REG 0.9492 0.3373 0.1811 
4.PCM 0.9254 0.3268 0.1502 
5.EC 0.8142 0.1668 0.0239 
6.TW 4.9279 0.4552 0.3789 
7.TW-PCM 5.0365 0.5423 0.5344 
8.0S-STFT-R1 1.4822 0.6260 0.4772 
9.0S-STFT-R2 1.0497 0.5391 0.4508 

10.OS-STFT-EW 1.6171 0.5900 0.5717 

Table 4.4:  Comparison of performance measures for various transforms of Signal 2 
added to complex noise ~ Af(0,T). The SNR is approximately -9.0 dB. 

• If the main goal of the oversampled transform is to reconstruct the signal as 
accurately as possible, then the OS-LSM-GT should be used. However, the 
OS-LSM-GT does not give an accurate indication of the actual time-frequency 

content of the signal. 

• If the main goal of the oversampled transform is to represent the actual time- 
frequency content of the signal accurately and with fairly good localization, 
then either the OS-LSM-GT with transform whitening and PCM or a version 
of the SSTFT should be used. However, neither the TW-PCM nor any of the 
SSTFTs can accurately reconstruct the signal. 

• Rank reduction, regularization, and energy-constrained solutions are very in- 
effective in providing accurate indications of the actual time-frequency content 
of noisy or information-mismatched signals, although all of these methods do 
increase the coefficient stability of the OS-LSM-GT. However, this increase in 
stability does not lead to a corresponding increase in transform accuracy. Of all 
the methods suggested in section 4.3 to increase the coefficient stability of the 
OS-LSM-GT, only transform whitening is able to localize signal components 
with any degree of accuracy. 



4.5.   Wexler-Raz (WR) Framework for Discrete-Time Gabor Transforms 93 

4.5    Wexler-Raz (WR) Framework for Discrete- 
Time Gabor Transforms 

Up to this point, the transforms and modifications examined in this chapter have 
been designed to implement the oversampled Gabor transform within the PF frame- 
work. One of the important assumptions of the PF framework is assumption Al, 
that the number of possible nonzero Gabor transform coefficients MN is less than 
the length L of the signal x. This section and the next two investigate a framework 
originally proposed by Wexler and Raz [WR90] in which the oversampled Gabor 
transform is calculated under the assumption that MN > L. 

The Wexler-Raz (WR) framework represents the discrete Gabor expansion of a 
length- L signal x as 

M-l JV-l 

*[*]   =    E ,ZCmng[k-N1n]eL^T-,-i (4.26) 
m=0 n=0 
M-l JV-1 

=    E J2Cmn9mn[k],   k = 0,l,...,L-l, (4.27) 
m—0 n=0 

where Mi and iVi represent the intervals of frequency and time, respectively, at 

which the Gabor transform is calculated and where <7mn[fc] = g[k — N\n\e     L 

The sampling frequency /, = | is implicit in (4.26).  In the WR framework, it is 
assumed that 

AfMi = NNi = L. (4.28) 

Stable reconstruction of the signal x from its Gabor transform coefficients requires 
that M\Ni < L or that, equivalently, 

MN>L. (4.29) 

The case where MN = L is the critical sampling case in the WR framework, while 
the case where MN > L is the oversampling case. 

The Gabor expansion in (4.26) is similar to the discrete-time Gabor expansion 
given in (3.2), which is repeated here for reference: 

M-1JV-1 

x[k] = x(kA) = E E Cmng(kA - na)ej2^nßkA,   k = 0,1,..., L - 1,      (4.30) 
m=0 n=0 

where the trailing na in the complex exponential term of (3.2) has been discarded 
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to allow a direct comparison between (4.26) and (4.30) 4. By comparing (4.26) and 
(4.30), one can rewrite the assumptions of the WR framework given by (4.28) in 
terms of the more familiar parameters a and ß: 

Na   =   LA (4.31) 

Mß   =   I (4.32) 
MNaß   =   L. (4.33) 

These three assumptions will be labeled Bl, B2, and B3, respectively; assumption BZ 
is derived by multiplying Bl and B2 together. Inspection of assumption BZ (4.33) 
reveals that the stable reconstruction condition (4.29) is equivalent to the familiar 
aß < 1. In fact, 53 shows that oversampling in the WR framework, MN > L, 
occurs <& aß < 1. Thus, the two definitions of oversampling are equivalent, at least 

within the WR framework. 

The assumption (4.28), while necessary in Wexler and Raz's derivation of the 
discrete-time Gabor transform [WR90, Appendix D], leads to unnecessary restric- 
tions in certain situations; this is best illustrated by an example. Suppose that one 
is given the samples of an 8 second signal, sampled every A = ^s; thus, there are 
L = 256 samples in the signal. For this signal, one wishes to calculate the Gabor 
transform coefficients, oversampled with a = ß = 0.5. Furthermore, suppose that 
it is known a priori that the maximum arrival time and maximum modulation fre- 
quency are both 3.5 for any of the signal components. Within the PF framework, 
one would set M = N = 8 and proceed to find the solution to the matrix equation 
x = G0c, with G0 of dimension (256 x 64). MN = 64 Gabor transform coefficients 
are calculated. These are the exact parameters within the PF framework of the 
transient detection problem that was analyzed in detail in Chapter 3. 

However, note that assumption Bl (4.31) of the WR framework dictates that 
N be set to N = — = 16. This prescribes the calculation of Gabor transform 
coefficients for logons with arrival times all the way up to (N — l)a = 7.5. The 
latter would be appropriate if one were given an 8 second signal without any a priori 
information about the possible component arrival times. However, the information is 
given that the maximum possible arrival time for any signal component is 3.5. From 
a practical standpoint, then, it is unnecessary to set N — 16, because it is known a 
priori that any transform coefficients with time index n > 7 are zero. 

Similarly, note that assumption B2 (4.32) of the WR framework dictates that M 

alternatively, one could substitute (k — Nxn) for k in the complex exponential term of (4.26). 
The term in question represents a constant phase, so it can be incorporated into the coefficients 
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be set to M = j^ = 64. This prescribes the calculation of Gabor transform coeffi- 

cients for logons with modulation frequencies all the way up to (M—1) ß = 31.5. The 
latter would be appropriate if one were given a signal sampled at /, = Z2Hz without 
any a priori information about the possible component modulation frequencies, as 
31.5 Hz is the maximum frequency on the oversampled Gabor lattice (a = ß = 0.5) 
that can be represented unaliased in this case5. However, the information is given 
that the maximum possible modulation frequency for any signal component is 3.5. 
Again, it is unnecessary from a practical standpoint to set M = 64, because it is 
known a priori that any transform coefficients with frequency index m > 7 are zero. 

Within the WR framework for the example above, then, one has to set N — 16 
and M = 64 and then find the solution to the matrix equation 

x = G0c, (4.34) 

with G0 of dimension (256 x 1024). MN = 1024 Gabor transform coefficients are cal- 
culated. The main difference in calculating the oversampled Gabor transform within 
the PF and WR frameworks lies essentially with the number of transform coefficients 
that need to be calculated. As the example above shows, it is extraneous to calcu- 
late the additional transform coefficients required by the WR framework-assumption 
(4.28) when a priori information is given about the signal. In other words, it is only 
necessary to calculate the number of transform coefficients dictated by the WR frame- 
work when one knows nothing about the signal components. Nevertheless, the WR 
framework will be explored further in the next two sections because a great deal of re- 
cent work [Bal92, B092, Orr91, Orr92, Orr93a, QC93, QC92, QC94a, QCL92, WR90] 
has focused on the calculation of the Gabor transform within the WR framework. 

4.6    Calculation of the Oversampled Gabor Trans- 
form in the WR Framework 

In the matrix equation (4.34) for the Gabor expansion within the WR framework, 
it is important to note that the signal subspace matrix G„ has more columns (MN) 
than rows (L) in the oversampled case. Indeed, when the oversampling parameters 
are a = ß = 0.5, assumption 53 (4.33) dictates that G0 has four times as many 
columns as rows. Thus, the matrix equation (4.34) represents an underdetermined 
linear system. This is exactly the opposite of the PF framework, where it is always 

5A sampling rate of fs = 32 Hz corresponds to a Nyquist rate of 32 Hz when only positive 
frequencies are allowed, as is the case here. 



96 Chapter 4.   Improving the Oversampled Gabor Transform 

assumed that MN < L (and usually MN « L), so that the corresponding matrix 
equation for the Gabor expansion represents an overdetermined linear system. 

Because the linear system (4.34) is underdetermined for the oversampled Gabor 
transform within the WR framework, there are an infinite number of exact solutions6. 
Following is a discussion of several methods of selecting the "best" solution among 
the infinite set of exact solutions. 

4.6.1    Periodized biorthogonal function method 

In [WR90], Wexler and Raz proposed the use of a discretized and periodized biorthog- 
onal function to calculate the Gabor coefficients Cmn: 

Cmn   =   E^]rmn[k] (4-35) 
Jfc=0 

=    E^OT-n^e-r^ (4.36) 

=     <*,7mn>, (4-37) 

where jmn is periodic with period L. The periodicity of jmn causes the transform 
coefficients Cmn to be doubly periodic, with period M in £m' (frequency) and period 
N in £n' (time). 

The discrete-time biorthogonal function 7 must satisfy the discrete-time biorthog- 
onality condition, which was determined by Wexler and Raz [WR90] to be 

J2g[k + nMle-t^m = jj^*H*M > (4"38) 
Jfc=0 

with 0 < n < Mi - 1 and 0 < m < Nx - 1. The window function g is also periodic 
with period L, a fact that was assumed by Wexler and Raz in their derivation of the 
discrete-time Gabor expansion7. Equation (4.38) can be rewritten in matrix form as 

6 Again, this is the exact opposite of the PF framework, where the overdetermined linear system 
representing the oversampled Gabor transform has no exact solutions - thus the motivation for a 
least-squared-error solution, which is provided by the OS-LSM-GT. 

7The Wexler-Raz begins with a signal x with finite length L, constructs a pseudo-periodic signal 
x with period L, and then makes use of this periodicity to convert the continuous-time Gabor 
expansion into a discrete-time Gabor expansion. The same construction of a pseudo-periodic signal 
is used to convert the continuous-time Fourier transform into the DFT. 
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where the elements of G7 are given by 

Gi(nNi+m,k) = g*[k + nA£\e     *      , 

and where the tilde has been dropped from 7 to emphasize that 7 is a vector. In 
equation (4.39), G7 is (Mi-ATi x L) and 7 is {L x 1). Because M1JV1 < L in the 
WR framework for the oversampled case, the linear system (4.39) is again under- 
determined and one must use some criterion to select a "best" solution out of the 
infinitely many exact solutions to (4.39). Once the "best" 7 is selected, the over- 
sampled Gabor transform coefficients can be calculated using 4.36. This method of 
calculation, involving the selection of 7 to satisfy the discrete-time biorthogonality 
condition (4.39) and the calculation of Cmn using inner products between the signal 
x and time-frequency-shifted versions of 7, will be referred to here as the periodized 
biorthogonal function method (PBFM). 

Two methods have been suggested to select an "optimal" solution ^„pt to (4.39). 
The first is to find the solution that minimizes the energy Ey = 7^7 of the biorthog- 
onal function vector 7. This solution is given by 

7opt = ÖW« = G?(G7Gf)" V0 , (4.40) 

rp 

where v0 = [ -^ 0 • • • 0 is the constant vector on the right-hand side of equa- 

tion (4.39). The matrix G^ (G-yG^)_1 is the pseudoinverse of G7 (the expression 
differs from the pseudoinverse defined in (3.16), because (4.39) is an underdetermined 
system, whereas (3.16) is an overdetermined system). 

Qian, Chen, and Li [QCL92] showed that ^min is also the biorthogonal function 
that best approximates the Gabor expansion window function g (assuming g has 

unit energy), in the sense that 

2 
7 

7mm =     mm 
■f:G^7=u0 

Finding 7mm that best approximates g is useful for the following reason: if 7mi„ « kg 
for some constant k, then 

x 
M-lN-l 

=    EE Cmngmn (4.41) 
m=0 n=0 
M-1JV-1 

= EE<». (TW— > A- (4-42) 
m=0 n=0 
M-lN-l 

«      ]C   2 k < ^' 9mn > gmn , (4-43) 
m=0 n=0 
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and the Gabor expansion is an "orthogonal-like" representation [QC93]. 

The other method of finding an "optimal" solution to (4.39) is to use the extra 
degrees of freedom in the underdetermined system of (4.39) to impose additional 
constraints on j^t, thereby shaping 7^ according to some optimizing criteria. This 
method was explored by Wexler and Raz in [WR90], where they forced various com- 
ponents of 7opt to zero. However, it is unclear what guidelines should be used to 
determine which components and how many components of 7^ to force to zero. 
Consequently, this method appears rather arbitrary in the absence of clear and un- 
derstandable criteria for optimizing the shape of 7^. 

4.6.2    Direct solutions 

Whereas the majority of published work [QC92, QC93, QC94a, QCL92, WR90] has 
focused on the solution of (4.34) by means of the PBFM using (4.36), it is also 
interesting to consider direct solutions to (4.34). Recall that the WR framework 
represents the Gabor expansion 

x = G0c (4.44) 

as an underdetermined system, with G0 having dimensions (L X MN), and with 
L = 0.25 * MN (assuming a = ß = 0.5). Note that G0 in (4.44), the signal subspace 
matrix, is not the same matrix as G7 in (4.39). 

Direct solution of (4.44) can be accomplished using the same two methods as 
described above for the solution of (4.39). First, the solution cw that minimizes 
the energy Eg — cHc of the coefficient vector c over all solutions of (4.44) can be 
found using the pseudoinverse of G0: 

c^n = Gf (G0Gf Tlx. (4.45) 

It should be noted that this type of solution was proposed by Daubechies [Dau91] in 
the form of a linear operator for the case of continuous-time signals. 

Second, similar to the zero-forcing method of Wexler and Raz described above, 
one can force certain components of Copt to zero. Here, zero-forcing takes on a much 
clearer meaning than it does within the PBFM: if certain Gabor transform coefficients 
in Cgpt are known to be zero, this information takes the form of additional constraints 
in selecting the solution of (4.44). In fact, one can think of the Gabor expansion in 
the PF framework as the system (4.44), but with so many components of c forced to 
zero that the system becomes overdetermined. 
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Figure 4.10: Minimum energy biorthogonal function 7mi„[A:], as compared to scaled 
version of original one-sided exponential window g[k] (with parameter A = 1). 

4.6.3    Examples 

Three of the above methods for calculating the oversampled Gabor transform within 
the WR framework will now be applied to Signals 1 and 2 from sections 4.3-4.4. 
The parameters that will be used for the WR framework are as follows: M = 64, 
N = 16,1 = 256, and A = £. 

First, consider the PBFM solution using the minimum energy biorthogonal func- 
tion vector 7min. Figure 4.10 plots the magnitude of 7*min as calculated from (4.40) 
and compares this with a scaled version8 of the magnitude of the one-sided exponen- 
tial window function g (parameter A = 1). 

Figure 4.11 displays the magnitudes of the oversampled Gabor transform coeffi- 
cients and the corresponding contour plots when the PBFM with jmin is applied to 
Signals 1 and 2. This solution will be termed the "minimum biorthogonal function 
energy" (MBE) solution. 

A few important conclusions can be drawn from an examination of (4.11): 

There are many more transform coefficients within the WR framework. Notice 

8The scaling factor is 0.01 and is necessary because the original window function g does not have 
unit energy in discrete time (g is comprised of the samples of a window function with unit energy 
in continuous time). 
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Figure 4.11: Left-hand side: Gabor transform coefficient magnitudes and correspond- 
ing contour plot for Signal 1, using PBFM with 7mi„. Right-hand side: coefficient 
magnitudes and corresponding contour plot for Signal 2, using PBFM with 7min- 
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that the frequencies of the coefficients extend to 31.5, and the times extend to 
7.5. By comparison, the maximum time and maximum frequency for any of 
the coefficients in the PF framework was 3.5. 

• Although the transform coefficient magnitudes do not exactly match that of 
the signal components (which have magnitude 1 for both Signal 1 and Signal 
2), they are on the same order of magnitude. Moreover, the two plots are 
nearly identical for the two signals. Both of these observations indicate that 
the PBFM has good coefficient stability. 

• The PBFM localizes the signal components for both signals to the correct (2, /) 
coordinates. However, just as with the TW-PCM and with the SSTFT, there 
is some blurring of the main peak. 

Figure 4.12 displays the magnitudes of the oversampled Gabor transform coef- 
ficients and the corresponding contour plots when the minimum-coefficient-energy 
(MCE) solution is applied to Signals 1 and 2. The plots are very similar to those for 
Figure 4.11, and the same conclusions can be drawn. 

Finally, zero-forcing of the transform coefficients (to be referred to as the ZF 
solution) is applied to Signals 1 and 2 in Figure 4.13. The ZF solution was obtained 
by forming the submatrix (G0)z/ from the first 256 columns of G0 and then solving 
the critically determined linear system 

x = (G0)zf(c)zf. 

This is equivalent to forcing to zero all the transform coefficients corresponding to 
component arrival times greater than 1.5. Since the components in Signals 1 and 2 
have arrival times around 1, this form of zero-forcing should not cause any inherent 
problems in the ZF solution. 

Examination of Figure 4.13 reveals that the ZF solution still shows good coeffi- 
cient stability, but there is a great deal of blurring in the time direction. However, 
the amount of blurring is exaggerated because of the shorter time axis; in reality, 
the blurring in Figure (4.13) is about the same as the blurring in Figures (4.11) and 
(4.12), perhaps even less in the frequency direction. 
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Figure 4.12: Left-hand side: Gabor transform coefficient magnitudes and correspond- 
ing contour plot for Signal 1, using minimum coefficient energy (MCE) solution. 
Right-hand side: coefficient magnitudes and corresponding contour plot for Signal 
2, using MCE solution. 
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Figure 4.13: Left-hand side: Gabor transform coefficient magnitudes and corre- 
sponding contour plot for Signal 1, using zero-forced (ZF) solution. Right-hand 
side: coefficient magnitudes and corresponding contour plot for Signal 2, using ZF 

solution. 
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4.7    Analysis of the Oversampled Gabor Trans- 
form in the WR Framework 

4.7.1    Stability analysis 

The MBE, MCE, and ZF solutions for the oversampled Gabor transform within 
the WR framework can be compared to the five transforms listed in Table 4.1 for 
transform stability. The transform matrices corresponding to the respective solutions 
are as follows: 

• For the MBE solution, the transform matrix is the biorthogonal function matrix 
IV formed from time-frequency-shifted versions of the biorthogonal function 
—* 
'Ymin • 

• For the MCE solution, the transform matrix is the pseudoinverse 

B^ = Gf(G0Gf)-1. 

• For the ZF solution, the transform matrix is the pseudoinverse 

Bwz = (G0)zf {(G0)zf(G0)zf)    . 

Recalling that the coefficient stability of the transform coefficient estimates (when 
the signal x is embedded in complex, white Gaussian noise) is determined by the 
covariance matrix 2RRH (for a generic transform matrix R), Table 4.5 describes 
the "sizes" of the covariance matrices corresponding to the three WR framework 
solutions. Because the dimensions of the covariance matrices are MN x MAT, it was 
necessary to consider a set of WR framework parameters based on a lower sampling 
rate in order to generate Table 4.5: M = 32, N = 16, L = 128, A = ^. Note 
that the covariance matrices of Table 4.5 are still much larger in dimension than the 
covariance matrices of Table 4.1. 

Examination of Table 4.5 reveals what was indicated by the examples of the previ- 
ous section, that the WR framework solutions for the oversampled Gabor transform 
possess good coefficient stability. 

4.7.2    Accuracy analysis 

The MBE, MCE, and ZF solutions for the oversampled Gabor transform within the 
WR framework can also be compared to the transforms and modifications examined 
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Measure 
Covariance Matrix 

2ivrfr 2BwB{y 2Bwz&wz 
condition number 4.2260el8 4.5744el8 3.9068el8 
2-norm 0.1574 0.0774 1.5066 
1-norm 0.5278 0.1832 2.4294 
oo-norm 0.5278 0.1832 2.4294 
Frobenius norm 1.3834 0.4124 3.1052 
max(diag(-)) 0.0316 0.0160 0.3232 

avg(diag(-)) 0.0302 0.0086 0.0238 
min(diag(-)) 0.0200 0.0054 0.0116 

Table 4.5: Stability of coefficient estimates, M=32, N=16, L=128, A _i_ 
16 

in section 4.4, by means of the performance measures proposed in that section. In 
this subsection, the parameters of the WR framework are set back to M = 64, 

TV =16, L 256, and A 32' 

Table 4.6 below lists the values of the three performance measures attained by 
the three WR framework solutions when applied to Signal 1. 

Solution 
Performance measure 

NRE CONC CC 
MBE 0.1415 0.6820 0.5109 
MCE e 0.6877 0.5142 
ZF e 0.8327 0.5994 

Table 4.6: Comparison of performance measures for various solutions for the over- 
sampled Gabor transform within the WR framework, as applied to Signal 1. Any 
value of NRE less than 10~9 is denoted by e. 

Examination of Table 4.6 reveals that all three solutions perform rather well for 
Signal 1 (the no-mismatch case), but not as well as the OS-LSM-GT. It should be 
noted that in the WR framework, all solutions should be exact solutions since the 
system is underdetermined. Thus, NRE should always be 0 regardless of the signal. 
That NRE is not 0 for the MBE solution is due to roundoff or computational error 
in the calculation of the inner products, not due to any theoretical deficiency of the 
MBE solution as compared to the other two solutions. 
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Table 4.7 below lists the values of the three performance measures attained by 
the three WR framework solutions when applied to Signal 2. 

Solution 
Performance measure 

NRE CONC CC 
MBE 0.1420 0.6563 0.4914 
MCE e 0.6598 0.4945 
ZF e 0.8060 0.5734 

Table 4.7: Comparison of performance measures for various solutions for the over- 
sampled Gabor transform within the WR framework, as applied to Signal 2. Any 
value of NRE less than 10~9 is denoted by e. 

As indicated by the examples of the previous section, the performance measures 
for the three solutions do not degrade very much in the switch from Signal 1 to 

Signal 2. 

Table 4.8 below lists the values of the three performance measures attained by 
the three WR framework solutions when applied to Signal 2 with complex Gaussian 

noise (~ A/"(0,I)) added in. 

Solution 
Performance measure 

NRE CONC CC 
MBE 0.1867 0.0701 0.2669 
MCE e 0.0643 0.2522 
ZF 0.7319 0.0948 0.1600 

Table 4.8:  Comparison of performance measures for various solutions for the over- 
sampled Gabor transform within the WR framework, as applied to Signal 2 with 
complex Gaussian noise 
denoted by e. 

JV(0,I) added in.   Any value of NRE less than 10 9 is 

Examination of Table 4.8 reveals that there is a dramatic drop in transform 
localization and accuracy (as measured by CONC and CC) for all three solutions 
when noise is added to Signal 2. Also, the NRE value for the ZF solution increases 
dramatically because a large portion of the Gaussian noise is orthogonal to the entire 
ZF signal subspace matrix (G0)z/ (thus, the noise is not represented well by the ZF 
solution coefficients). Figure 4.14 illustrates the loss of accuracy in the MBE and 
MCE solutions when noise is added to Signal 2. 
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Figure 4.14: Left-hand side: Gabor transform coefficient magnitudes and corre- 
sponding contour plot for Signal 2 and noise, using MBE solution. Right-hand side: 
coefficient magnitudes and corresponding contour plot for Signal 2 and noise, using 
MCE solution. 
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While all the solutions maintain good coefficient stability, this drop in accuracy 
with the addition of noise is unsatisfactory and casts serious doubt on the use of the 
WR framework for transient signal detection problems. 

4.8     Conclusions 

This chapter analyzed several methods of improving upon the major weakness of the 
OS-LSM-GT, its lack of numerical stability. The first part of the chapter focused on 
several numerically-based modifications of the OS-LSM-GT while remaining within 
the PF framework. It was shown through examples and through performance analysis 
that none of these methods can simultaneously reconstruct the signal accurately and 
localize the time-frequency content of the signal accurately. If the former is most 
important, then the unmodified OS-LSM-GT is most effective; if the latter is most 
important, then either the OS-LSM-GT with transform whitening and PCM or the 
SSTFT should be used. 

The second part of the chapter examined the calculation of the oversampled Ga- 
bor transform within another framework that has been the subject of much recent 
research, the Wexler-Raz (WR) framework. It was shown that calculation of the 
oversampled Gabor transform within the WR framework is most useful when one 
desires coefficient stability in the transform coefficients and accuracy in reconstruct- 
ing the signal from the transform coefficients. However, there are several problems 
with using the WR framework to calculate the oversampled Gabor transform for 
transient signal detection problems: 

1. The computational burden is much greater. For transient detection problems, 
it is especially disadvantageous to transform an L-length signal into MN coef- 
ficients if MN > L, since the purpose of the transform step is to simplify the 
problem. Yet, oversampling the Gabor transform within the WR framework 

dictates that MN > L. 

2. The WR framework requires the calculation of many more Gabor transform 
coefficients than are necessary for cases where a priori knowledge of the signal's 
time-frequency characteristics can be applied. This was demonstrated in the 

example of section 4.5. 

3. Calculating the oversampled Gabor transform within the WR framework re- 
quires the selection of a particular solution among an infinite set of exact 
solutions to an underdetermined system. It is not always clear what criteria 
should be used to make this selection. 
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4. None of the solution methods for the oversampled Gabor transform within 
the WR framework that were explored in this chapter provided accurate or 
localized transform coefficients when applied to a noisy signal. 

The basic question posed by this chapter - "Is there a version of the oversam- 
pled Gabor transform (or of any oversampled linear transform) that provides both 
accurate reconstruction of the signal and an accurate, localized representation of 
the time-frequency content of the signal while maintaining coefficient stability?" - 
remains unanswered. All of the transforms and modifications investigated in this 
chapter - which encompass almost all of the methods for calculating the oversam- 
pled Gabor transform that can be found in the present literature - fall short in at 
least one of the three areas. 

The above conclusions, then, appear fairly bleak. However, an adaptive ver- 
sion of the oversampled Gabor transform will be investigated in the next chapter, 
and this "adaptive Gabor transform" (based on the principles of matching pursuit 
[MZ92, MZ93, QCC92, QC94b]) will prove to be vastly superior to any of the trans- 
forms and modifications investigated in this chapter in terms of representing the 
time-frequency content of signals with good accuracy and good localization, while 
still maintaining fairly good reconstruction properties. Whether there are any non- 
adaptive forms of the oversampled Gabor transform that can provide all these prop- 
erties simultaneously is a question - albeit a difficult one, as demonstrated by this 
chapter - for further consideration. 



Chapter 5 

The Gabor Transform In 
Transient Signal Classification 

5.1     Introduction 

This chapter focuses on the problem of transient signal classification. In other words, 
the problem is not to determine whether a transient signal is present (or not), but 
rather to determine what type of transient signal is present after it has been deter- 
mined that some kind of signal is indeed present. 

Section 5.2 sets up a simple transient classification problem using the PF frame- 
work as a base model. Section 5.3 presents two GLRT-based classifiers for the prob- 
lem of section 5.2 and analyzes the statistics of these two classifiers. 

Section 5.4 investigates the ada-ptive Gabor transform (AGT) as an alternative to 
the non-adaptive linear TFRs of Chapters 3 and 4. The AGT is applied to the sample 
signals of Chapter 4 and the performance measures of Chapter 4 are calculated for 
the resulting transform coefficients. 

Section 5.5 presents a comparison among the two GLRT-based classifiers and 
a classifier based on the AGT. Classifier performance is evaluated through Monte 
Carlo simulations. Using the results of the Monte Carlo simulations, the optimal 
detector-classifier combination within the PF framework is proposed. 

Finally, section 5.6 summarizes the conclusions of the chapter and presents some 
ideas for future work. 

110 
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5.2    Framework for Transient  Signal  Classifica- 
tion 

The model for transient signal classification that will be used in this chapter is based 
on the PF framework, assuming unknown signal component locations. Recall that 
the transform step for this particular problem is given by 

z = B0G0c + w, (5.1) 

where G0 is a signal subspace matrix comprised of oversampled Gabor logons and 
B0 = (Gf G0)

_1Gf is the pseudoinverse of G0. B0, once again, is the transform ma- 
trix corresponding to the oversampled least-squares-method Gabor transform (0S- 

LSM-GT). 

Recall also that the hypothesis test for transient signal detection within the PF 
framework in the unknown location case is given by 

Ho : c = 0 

vs. 

Hi:cV0. (5.2) 

It will be assumed for most of this chapter that hypothesis Hi has been chosen by 
a transient signal detector. The problem of transient signal classification is then to 
determine what type of signal has been detected. 

The classification problem that will be examined in this chapter is a simple 
one: determine whether the signal has high-frequency components or low-frequency 
components. Here, high-frequency and low-frequency signal components are defined 
in terms of the maximum possible component frequency (M — l)ß as follows: a 
low-frequency component is a component whose frequency / satisfies 0 < / < 
{M-i)ß ^ wj1j|e a high-frequency component is a component whose frequency / sat- 

isfies i^=i^ < f < (M - l)ß. For example, with the value of M = 8 that was 
used in Chapter 3, 0 < / < 1.75 is the range for low-frequency components and 
1.75 < / < 3.5 is the range for high-frequency components. 

Since the oversampled Gabor logons only have frequency components that are 
integer multiples of ß = 0.5, the above definition indicates the following for signals 
x = G0c that are expressible as linear combinations of the oversampled Gabor logons: 

A low-frequency signal X*L is a signal that can be expressed as a linear com- 
bination of low-frequency Gabor logons, i.e., those logons corresponding 
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to frequencies / such that 0 < / < (M~2)ß. A high-frequency signal xH is 
a signal that can be expressed as a linear combination of high-frequency 
Gabor logons, i.e., those logons corresponding to frequencies / such that 

^</<(M-l)/5. 

For example, using M = 8, a low-frequency signal XL can be expressed as a linear 
combination of Gabor logons whose frequencies / satisfy 0 < / < 1.5, while a high- 
frequency signal XH can be expressed as a linear combination of Gabor logons whose 

frequencies / satisfy 2.0 < / < 3.5. 

In order to facilitate a simple representation of the classification problem, it is 
advantageous to partition the oversampled signal subspace matrix G„ into submatri- 
ces Gi and G#, whose columns consist of low-frequency and high-frequency Gabor 
logons, respectively (the 'o' subscript has been dropped for convenience in the sub- 
matrices). Similarly, the transform coefficient vector c can be partitioned into c^ and 
CH. The signal x = G0c can then be rewritten as 

x G, 'H 
CL (5.3) 

With the partition given by (5.3), the classification problem is given by the fol- 

lowing binary hypothesis test: 

Hia : cL ^ 0 and cH - 0 

vs. 

Hl6 : cL = 0 and cH ^ 0. (5.4) 

Arbitrarily, Hi6 will be considered the null hypothesis and HXo will be considered 

the alternative hypothesis. 

5.3     GLRT-Based Classifiers for Transient Signal 
Classification 

5.3.1     GLRT classifier 

The hypothesis test given by (5.4) contains a composite alternative hypothesis and 
a composite null hypothesis, so the logarithmic form of the GLRT (given the trans- 

formed observations z) is given by 

ti = max{21ogpla(z | c)} - max{21ogpi6(i'| c)} . (5.5) 
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Given that z ~ N(c, 2B0Bf) and letting 

(2B0Bf )_1 = A1 = n = 
IIHL   TIHH 

?H 
ZL   ~ <?L     ZH 

JH 

the term 21ogpia(.z) in (5.5) can be written as 

21ogpi„(z)   =   -MiVlog27r-log|A| 

HLL   IILH       ZL — cL 

HHL    IlifH J   [       ZH 

=   K-{ZL- CL)
H

HLL(ZL - cL) + Z^J1HL{ZL - CL) 

+ (zL - CL)
H

HLHZH + Z%ILHHZH 

= K-(ZL-CL + IIIITILHZH)
H

I1LL(ZL - 4 + TII
X

LHLHZH) 

+ z§(UHH - UHLUilnLH)zH, (5-6) 

where K = —MNlog 2ir — log |A| is constant. The last expression in (5.6) is maxi- 
mized when 

CL = ZL + IL2ZJLLHZH , 

which sets the second term equal to zero and results in a maximum value of 

max{2 log pla(z \c)}   =   K - ZH(HHH - ^HL^-LL^-LHJZH 
c 

=   K-Z^A^HZH, (5.7) 

where the last equality stems from a well-known result regarding the inverse of a 
partitioned matrix [Sch91, for example]. 

Similar calculations to the above produce the expression for the second term in 
the log GLRT statistic: 

max{2 log plb(z \c)} = K- Z? A££ZL • (5.8) 
c 

Thus, the GLRT statistic for the classification problem of (5.4) is given by 

h = z*A7LlzL - z*A^HzH . (5.9) 

To determine the statistics of t\, note that 

z — ZL 

ZH 
AT CL 

CH 
,2 ALL   Au? 

AHL   Ann 

so that 
zL ~ Af{cL, 2ALL)       and       zH ~ N{cH, 2AHH) 

(5.10) 

(5.11) 
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Given the statistical properties of ZL, one can deduce that zff A^iz, is.noncentral %2- 
distributed with MN degrees of freedom and noncentrality parameter VL = C^AJ^CL 

under Hia and central %2-distributed with MN degrees of freedom under Hi&. Sim- 
ilarly, Z§A]^HZH is noncentral %2-distributed with MN degrees of freedom and non- 
centrality parameter VH = CH^HH^H under Hi& and central %2-distributed with 
MN degrees of freedom under Hi„. Under either hypothesis, then, the statistic ti 
is the difference between a central %2-distributed random variable and a noncentral 
%2-distributed random variable. Note that the formation of the GLRT statistic t\ 

involves the following steps: 

1. Partition z into Z*L and ZR. 

_I 

2. "Whiten" zL and zH separately, i.e., premultiply zL by AL| and premultiply zH 
_i _i _i 

by AH
2

H. Let WL = AL£5L and WH — AH
2

HZH denote the whitened subvectors. 

3. Calculate the energies tuff WL and W§WH of the whitened subvectors. 

4. Take the difference of the energies of the whitened subvectors to form ti = 

wfwL - W%WB- 

Since t\ is the difference of two %2 random variables, it is not possible to derive 
the probability distribution of ii in closed form [MP92]. However, it is possible to 
express the probability distribution of ti as an integral, using characteristic functions. 

This is done as follows: 

1. Note that tx can be rewritten as zHMz, where 

M = 
Ail      0 

0     Aä 

i _, 
2. Rewrite the expression for ii from step 1 in terms of ( = V2 A   *z 

*! = C^MxC, 

where Mi = A 2 MA 2. 

3. Decompose Mi as PDP-1, where D is diagonal and P is unitary. 

4. Rewrite the expression for £1 from step 2 as 

*i = fPDS, 

where 6 = PXC  ~ NCP^A-'c,!). 
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5. Rewrite the expression for ti from step 4 as 

h = di61 + d282 + ... + diaatSlast, 

where d\ is the ith diagonal element of D and where last = ^-. Note that this 
last expression for ij represents ti as a sum of independent random variables. 

6. Calculate the characteristic function ^(v) = E{ejvtl} of ij as the product of 
the characteristic functions of the individual terms in the sum of step 5: 

(f>tl{v) = tafcOO x <f>dd2{v) x ... <f>ddlast{
v) . 

where ddi = a\8i. Note that <f>ddi{v) = fa^div) and that ^ is the characteristic 
function of a noncentral %2 random variable. 

7. Determine the probability distribution p(ii) by taking the inverse Fourier trans- 

form of (ßt^v): 
1       /■oo 

V{t1) = -j_jtl{v)e-^dv. (5.12) 

Because the distribution of t\ is dependent on the particular signals assumed in 
hypotheses H\a and Hn, it is necessary at this point to specify the parameters of 
the framework. Once again, the parameter values are assumed to be M = N = 8, 
L = 256, and A = ^ (see equation (3.2) to review the meanings of these parameters), 
and the window functions for the Gabor logons is a one-sided exponential window 
with parameter A = 1. Under Hia, EL has one nonzero component with magnitude 
1, corresponding to the logon with (t,f) coordinates (1,1.5). Under Hib, CH has 
one nonzero component with magnitude 1, corresponding to the logon with (t,f) 
coordinates (1,2). Assuming there is no location mismatch (i.e., t and / for all signal 
components are integer multiples of 0.5 and satisfy 0 < t < 0.5N and 0 < / < 0.5M), 
the two signals described by C£ and CH above represent the hardest possible pair of 
signals to identify correctly: one is low-frequency, one is high-frequency, and the two 
signals have components that are adjacent to each other on the oversampled Gabor 
transform grid. The time histories of the signals contain considerable overlap, since 
the signals have components with the same arrival time. The two signals are plotted 
in Figure 5.1. 

Given the exact signals used for Hi0 and Hit, it is possible to plot the distri- 
butions for the GLRT statistic ti under Hia and Hit, using the seven-step method 
involving characteristic functions that was outlined above . The distributions are 
shown in Figure 5.2. 
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Figure 5.1: The real part of a low-frequency signal with (t, /) coordinates (1, 1.5), 
plotted with the real part of a high-frequency signal with (i,/) coordinates (1, 2). 
Both signals are based on a one-sided exponential window with parameter A = 1. 
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Figure 5.2:   Probability distributions of ii statistic under Hia and H^, assuming 
signals as plotted in Figure 5.1. 
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It is clear from Figure 5.2 that the distributions of tx are nearly identical under 
Hi0 and Hu,. Obviously, this indicates that the GLRT statistic tx will perform 
extremely poorly in classifying the two particular signals of Figure (5.1). It is well 
known [Fri90] that the GLRT statistic is not necessarily an optimal statistic for a 
given binary hypothesis test, and this is clearly one example. 

5.3.2    Modified-GLRT classifier 

Given the poor classification performance of the GLRT statistic ii, a modification 
of the GLRT statistic is proposed here. The modified-GLRT statistic t2 is based on 
a partition of the whitened transform coefficients, ( — A~*z: 

h = C?d - CSCH ■ (5-13) 

Notice the difference in the formation of ti and t2: 

• The GLRT statistic tx is formed by partitioning the transformed observations 
z into ZL and z# and then whitening the two subvectors separately into WL and 
WH- While WL and WH each have 21 covariance matrices (i.e., the components 
within each subvector are independent), it is not the case that WL and WH are 

independent of each other. 

• The modified GLRT statistic t2 is formed by first whitening the entire transform 
vector .z into (, and then partitioning ( into C,L and (H- Thus, (L and (# again 
have 21 covariance matrices, but they are abo independent of each other. 

Given the particular signals of Figure 5.1 for hypotheses Hia and Hu,, the proba- 
bility distributions for t2 under HXa and Hi6 can be plotted using the same seven-step 
method involving characteristic functions that was detailed in the previous section. 
Here, however, steps 1-3 can be skipped since t2 is already of the form t2 = 6 D8, 

with 8 = ( and 
" I      0 

0   -I 
D 

The probability distributions for t2 under Hia and Hib are plotted in Figure 5.3. 

It is clear from Figure 5.3 that t2 is an improvement over tx. Assuming a threshold 
of 0, the values of pfa and p<* are both calculated (using integral approximations) 
to be approximately 0.182. However, the rates for t2, while much lower than the 
error rates for t1} are still not particularly low.  This is a direct consequence of the 
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Figure 5.3:  Probability distributions of t2 statistic under HXo and Hi&, assuming 
signals as plotted in Figure 5.1. 
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fact noted in Chapter 4, that the transform-whitened OS-LSM-GT, upon which t2 

is based, represents the time-frequency location of a one-component signal fairly 
accurately but not very locally (i.e., there is blurring involved). 

In the next section, an entirely different approach to transient signal classification 
will be taken, based on an adaptive form of the Gabor transform. 

5.4    Adaptive Gabor Transform (AGT) 

Because of the problems encountered above by both the GLRT classifier (based on 
the OS-LSM-GT) and - to a lesser extent - the modified-GLRT classifier (based 
on the transform-whitened OS-LSM-GT), this section examines a classifier based on 
the adaptive Gabor transform (AGT), which calculates the Gabor transform in an 
entirely different manner than any of the methods mentioned in previous chapters. 

5.4.1     Calculating the AGT 

The calculation of the AGT, first described concurrently by Mallat and Zhang [MZ92, 
MZ93] and by Qian, Chen, and Chen [QCC92], is based on the idea of approximating 
vectors through iterated one-dimensional projections. Mallat and Zhang term this 
process "matching pursuit." 

The algorithm for calculating the AGT of a signal x using the principles of match- 

ing pursuit is given as follows: 

1. Let the set of oversampled Gabor logons comprising the columns of G0 be de- 
noted as S = {gmn : 0 < m < 7, 0 < n < 7}, where the logons gmn are defined 
in equation (3.39) of Chapter 3. 

2. Find the logon gmn G S that has the largest1 inner product with x and denote 
this logon g^: 

9™ = arg|max|< x,gmn >\>. (5-14) 

Since complex numbers are involved, the absolute value in (5.14) indicates a 
complex number magnitude. This step is equivalent to finding the maximum 
component of z = G0x. 

1 Largest here means largest absolute value. 
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3. Calculate the residual vector r W = x— < x,g^ > g^\ If the Gabor logons 
are normalized (i.e., < gmn,9mn >= 1 for all m,n), then f^ is orthogonal to 
gW. 

4. Repeat step 2, with r ^ substituted for x: 

<f (2' = arg < max {max|<f>W^nB>|}. (5.15) 

This is equivalent to finding the maximum component of the vector G0f ^'. 
Then calculate the residual vector f<2> = f W- < rW,gW > g{2). 

5. At any iteration I, if it is the case that < f^l~l\gmn >= 0 Vgmn G S or that 
the residual vector f ^ is calculated to be 0 (or 0 to within some tolerance e), 
then stop. Otherwise, continue iterating for as many iterations as desired. At 
the Ith. iteration, the goal is to find the logon g"> such that 

£« = arg {max < f ^W™ > } , (5.16) 

and then to calculate the Jth residue vector f W = f (I_1)- < f C-1), <f ^ > g®. 

By definition, r*W = x. 

6. After p iterations, the signal x is given by the decomposition 

S = £ < f V-VjW > gU + f W (5.17) 

The inner products < f (/_1), <f w > (Z = 1,2,... ,p) form the AGT coefficients. 
If more than one of the inner products correspond to the same Gabor logon, 
then they are simply added together to form the AGT coefficient for that logon. 

The two natural termination conditions mentioned in step 5 of the AGT algorithm 
correspond to slightly different situations: 

• If, at the hh. iteration, it is the case that < rl~x,gmn >= 0 Vgmn 6 S, then 
the residual vector r ^_1) is orthogonal to every logon in S and the algorithm 
cannot reduce the squared error Ri-\ =< r (*-1), r (i_1) > any further. 

• If, after the Zth iteration, it is the case that < r®, r® > is calculated to be 0 
(or 0 to within some tolerance e), then the algorithm has reached its ultimate 
goal of decomposing the signal completely. 
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If the number of iterations is allowed to become arbitrarily large, then one of the 
two termination conditions will be reached. To show this, it is necessary to show 
first that the residual errors Ri = < f^l\ f^ > form a monotonically decreasing 
sequence. 

Proposition 5.1: For any positive integer I, the residue vectors r"-1' andr"> have 
energies Ri-\ and Ri, respectively, that satisfy Ri < Ri-\. 

Proof: Recall that f ^ is defined as 

f(0 = f C-i)_ <f <'-!),£« >£('>, 

where g® is defined as 

g*W = arg \ max < f(z_1), gmn > \ . 

It is either the case that < f P-1), £ W > = 0 or < r^-x\g^ > ^ 0. If it is the case 
that < f^-1),^« > = 0, thenf « = f P"1) and R^ = £,. If < f^1),^« > / 0, 
then 

Rl=< r-m f(o > = < f(i-i), fP-i) > _2 < ?('-*>, ^w >2 + < fd-D, ^(o >2 

= < fC-1), fP-1) > - < fc-1), ^w >2 

< <f,(z-1)f(i-1)> 

Proposition 5.1 makes it possible to show that the sequence of squared residual 
errors Ri converges as I —> oo. 

Proposition 5.2:  The sequence {Ri}t of squared residual errors converges as I —* 
oo. 

Proof: For I = 1,2,..., the sequence {Ri}t of squared errors is a monotonically 
decreasing sequence (from Proposition 5.1), bounded above by E = x x and 
bounded below by 0. It is well known [Rud76, theorem 3.14] that a bounded 
monotonic sequence converges. Thus, {Ri}{ is a convergent sequence. ■ 
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If the sequence {Ri}t converges to 0, then the second termination condition of 
the AGT algorithm is reached. If {Ri}t converges to a number greater than 0 (but 
less than or equal to E = xHx), then the first termination condition of the AGT 
algorithm is reached. In the latter case, the limiting residual vector f (Um) may still 
have an energy greater than the minimum squared error 

SE-min =< x — G0B0x, x — G0B0x > 

resulting from the OS-LSM-GT. In other words, r (/tm) may be a vector that is or- 
thogonal to the columns of G0 but not equal to the error vector x — G0Bos produced 
by the OS-LSM-GT 2. 

Finally, the following proposition covers the special case when the signal x lies 
within span{Sy. 

Proposition 5.3: If the signal x lies in within span{S} (i.e., x = G0c for some 
c), then the sequence {Ri}l converges to 0 and the AGT coefficients match the OS- 
LSM-GT coefficients. 

Proof: After every iteration, the residual vector can always be expressed as a linear 
combination of the Gabor logons; i.e., 

where Q is some constant vector. Now the AGT algorithm only terminates when 
the remaining residual vector is orthogonal to every Gabor logon in S (this holds 
true for either of the termination conditions). This orthogonality condition im- 

plies that 
Gf r («•»> = Gf G0clim = 0. (5.18) 

However, if Qim ^ 0, (5.18) implies that the Gram matrix G^G„ is singular, 
which is true if and only if the columns of G0 are linearly dependent [Sch91, 
section 9.2]. Now the oversampled Gabor logons that comprise the set S are lin- 
early independent, so G^G0 is nonsingular. Therefore, cum = 0 and the sequence 

{Ri}t converges to 0. 

That the AGT coefficients converge to the OS-LSM-GT coefficients (which 
equal c under the conditions of the proposition) is easily proved by contradiction. 
Suppose cum ^ c. Then, since the limiting residual vector is 0, 

x    —    G0cum — G0c 

=>   G0{cHm-c) = Ö, 
2When G0 has more rows than columns, as is the case with the PF framework, there are an 

infinite number of vectors v such that G^v = 0. 
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which implies that the columns of G0 are linearly dependent, since cum—c^ 0. As 
mentioned above, the columns of G0 are linearly independent. Therefore, it must 
be the case that cum = c and the AGT coefficients converge to the OS-LSM-GT 
coefficients under the conditions of the proposition. ■ 

5.4.2    Examples and performance measures for AGT 

The AGT is now examined for the same signals and performance measures as used 
in Chapter 4. First, consider Signal 1, a one-component signal with one-sided ex- 
ponential window (parameter A = 1) located at (2, /) coordinates (1, 1). Signal 1 
is contained within span{S}, so Proposition 5.3 predicts that the AGT coefficients 
should converge to the actual coefficients of Signal 1. Figure 5.4 shows that the AGT 
coefficients do indeed converge to the actual coefficients of Signal 1 after just one 
iteration. 

frequency 

Figure 5.4: Magnitudes of AGT coefficients for Signal 1. 
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As shown in Table 5.1 below, the performance measures for the AGT (after one 
iteration) match those of the OS-LSM-GT for Signal 1 (both sets of measures take 
on ideal values): 

Transform 
Performance measure 
NRE CONC cc 

OS-LSM-GT e 1 1 
AGT (1 iteration) e 1 1 

Table 5.1: Performance measures for OS-LSM-GT and AGT as applied to Signal 1. 
This is the no mismatch case. Any value of NRE less than 10-9 is denoted by e. 

Next, consider Signal 2, a one-component signal with one-sided exponential win- 
dow (parameter A = 1) located at (£, /) coordinates (1.05, 1). Recall that because of 
the instability of the OS-LSM-GT, the OS-LSM-GT coefficients for Signal 2 range 
in the thousands. Figure 5.5 shows the AGT coefficients of Signal 2 after 3 itera- 
tions and after 20 iterations, and it is clear that the AGT possesses good coefficient 
stability in the presence of information mismatch. 
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frequency frequency 

time time 

Figure 5.5: Left-hand side: magnitudes and corresponding contour plot of AGT 
coefficients for Signal 2, after 3 iterations. Right-hand side: magnitudes and corre- 
sponding contour plot of AGT coefficients for Signal 2, after 20 iterations. 
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Both cases show that the AGT coefficients represent the time-frequency content of 
the signal much more accurately than any of the non-iterative methods examined in 
Chapter 4. This is reflected in Table 5.2, which lists the corresponding performance 
measures for the AGT after 3 iterations, 20 iterations, and 100 iterations. 

Transform 
Performance measure 

NRE CONC cc 
OS-LSM-GT 0.0951 0.5027 0.2939 
AGT (3 iterations) 0.3044 0.9726 0.9863 
AGT (20 iterations) 0.2127 0.9467 0.9711 
AGT (100 iterations) 0.1749 0.7724 0.8767 

Table 5.2: Performance measures for OS-LSM-GT and AGT as applied to Signal 2. 

Notice that as the number of iterations increases, NRE for the AGT decreases but 
CONC and CC also decrease. In other words, the increase in accuracy with respect 
to NRE resulting from increasing the number of iterations in the AGT algorithm is 
accompanied by a decrease in "localization accuracy" as measured by CONC and CC. 
Note, however, that the value of NRE attained by the AGT after even 3 iterations 
is perhaps acceptable given the excellent values the AGT attains for CONC and CC 
in that case. 

Finally, consider Signal 2 with complex Gaussian noise (~ Af(0, I)) added in. Fig- 
ure 5.6 shows the AGT coefficients of the noisy version of Signal 2, after 3 iterations 
and after 20 iterations. 
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frequency frequency 

time 

Figure 5.6: Left-hand side: magnitudes and corresponding contour plot of AGT 
coefficients (after 3 iterations) for Signal 2 added to complex noise ~ .A/^O, I). Right- 
hand side: magnitudes and corresponding contour plot of AGT coefficients after 20 
iterations for the same signal. 
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Examination of Figure 5.6 reveals that the localization of the signal component 
degrades considerably after 20 iterations in this case. This is confirmed in Table 
5.3 below.  Table 5.3 indicates that there is a considerable decrease in localization 

Transform 
Performance measure 

NRE CONC CC 
OS-LSM-GT 0.7628 0.3770 0.2650 
AGT (3 iterations) 0.9270 0.7475 0.8635 
AGT (20 iterations) 0.8785 0.4677 0.7025 
AGT (100 iterations) 0.8571 0.3093 0.6014 

Table 5.3: Performance measures for OS-LSM-GT and AGT as applied to Signal 2 
added to complex noise ~ Af(0,T). The SNR is approximately -11.9062 dB. 

accuracy with very little increase in reconstruction accuracy in return as the number 
of iterations in the AGT increases. Note that the NRE for the AGT after 3 iterations 
is already fairly close to the NRE for the OS-LSM-GT, the minimum NRE possible. 

The above examples serve to illustrate that the AGT after a few iterations is 
vastly superior to any of the transforms and modifications examined in Chapter 4 
in terms of representing the time-frequency content of signals with good accuracy 
and good localization; at the same time, the AGT achieves reasonable reconstruction 
accuracy (NRE < 1) after just a few iterations. 

The main drawback to the AGT is that it calculates a localized representation (as 
it does for the signals above) even if there is no signal. For example, consider Figure 
5.7, which plots the AGT coefficients after 3 iterations of the complex noise vector 
used in the last example above. Even though there is no signal present, the AGT 
coefficients of the noise seem to indicate that there are three signal components with 
appreciable magnitudes (ranging from 0.3 to 0.4 - recall that the magnitudes of the 
signal components in Signal 1 and Signal 2 are both 1). This property of the AGT 
precludes its use in signal detection schemes, since it does not distinguish "signal 
plus noise" from "noise alone" very well. However, once a signal has been detected, 
the AGT is very suitable for signal classification schemes, as will be demonstrated 
in the next section. 
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frequency 0    0 

Figure 5.7:   Magnitudes of AGT coefficients after 3 iterations for complex noise 

5.5     Simulation Results 

5.5.1     AGT classifier 

The AGT coefficients as defined by the inner products in the decomposition of (5.17) 
can be used to form a classifier for the classification problem given by (5.4). Denoting 
the vector of AGT coefficients as a and partitioning this vector into SL and EH in a 
manner similar to the partitioning of c in (5.3), a logical AGT-based statistic for the 
hypothesis test in (5.4) is 

<3 = 5?"r, ~ ä%SH. (5.19) 

The statistic i3 simply calculates the energy of the low-frequency AGT coefficients 
and subtracts from this the energy of the high-frequency AGT coefficients. Because 
the AGT is an iterative algorithm, the statistics for tZ are difficult if not impossible 
to determine analytically. Thus, the next section presents Monte Carlo simulations 
to compare the performance of 23 to that of the GLRT-based classifiers tl and tfl for 
the hypothesis test given by (5.4). 
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5.5.2    Monte Carlo simulations 

This subsection presents the results of Monte Carlo simulations that compare the 
performance of the classification statistics 21, 22, and 23 for the hypothesis test 
given by (5.4). Recall that 21 represents the GLRT classifier, 22 represents the 
modified GLRT (M-GLRT) classifier, and 23 represents the AGT classifier. Again, 
all of the classifiers are based on the oversampled Gabor transform with parameters 
a = ß = 0.5. The AGT classifier is based on the AGT coefficients after three 
iterations. 

In the first simulation, the low-frequency signal for hypothesis H\a and the high- 
frequency signal for hypothesis H\\, were assumed to be the two signals plotted in 
(5.1). The thresholds for each of the detectors were set to 0. The 0 threshold does 
not represent a typical choice for a Neyman-Pearson decision rule. However, it is 
logical to assume that in the classification problem of (5.4), one type of error is not 
any more serious than the other — thus the choice of the 0 threshold, which equalizes 
the two error probabilities. For the statistic il, the 0 threshold corresponds to an 
error probability of 0.493 for either hypothesis (see Figure 5.2). For the statistic 
t2, the 0 threshold corresponds to an error probability of 0.182 for either hypothesis 
(see Figure 5.3). As stated in the previous section, it is difficult if not impossible to 
determine the theoretical probability of error for the statistic 23. 

The Monte Carlo simulations were then conducted as follows: 

1. Generate the low-frequency signal shown in (5.1). 

2. Add to the signal complex Gaussian noise v = vTe + jvim, with vre ~ W(0,1) 
and vim ~ Af(0,T). 

3. Calculate the statistics 21, 22, and 23.   If any of them is less than zero, tally 
this as an error. 

4. Go back to step 2 and repeat for a total of 5000 trials, keeping a running count 
of the errors generated by each statistic. 

5. After all 5000 trials, divide the error counts by 5000 to obtain the sample miss 
probability associated with each statistic. 

6. Generate the high-frequency signal shown in (5.1). 

7. Add complex-Gaussian noise as in step 2 to the high-frequency signal. 

8. Calculate the statistics 21, 22, and 23. If any of them is greater than or equal 
to zero, tally this as an error. 
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9. Go back to step 6 and repeat for a total of 5000 trials, keeping a running count 
of the errors generated by each statistic. 

10. After all 5000 trials, divide the error counts by 5000 to obtain the sample false 
alarm probability associated with each statistic. 

The results of the Monte Carlo simulation using the signals plotted in (5.1) are 
shown in Table 5.4 below. 

Statistic 
Error measure 

Pm Pfa 
21 (GLRT) 0.5036 0.4846 
22 (M-GLRT) 0.1836 0.1778 
23 (AGT) 0.0110 0.0142 

Table 5.4: Monte Carlo error probabilities (5000 trials) for statistics 21 (GLRT), t2 
(modified GLRT), and 23 (AGT, 3 iterations). The SNR is approximately -11.9062 
dB. The (2,/) coordinates of the low-frequency signal are (1, 1.5); the coordinates 
of the high-frequency signal are (1, 2). 

As expected, the classifier 21, based directly on the GLRT, is essentially useless 
for this problem. The classifier 22, based on the transformed-whitened OS-LSM- 
GT coefficients, performs acceptably. However, the classifier 23, based on the AGT 
coefficients after 3 iterations, performs exceptionally well, with less than a 2 percent 
error under either hypothesis. This exceptional performance was to be expected, 
given the analysis in the previous section concerning the AGT of Signal 1 (the no- 

mismatch case). 

In the second Monte Carlo simulation, the signals were kept the same, except 
the frequency coordinates were varied to create a frequency mismatch. For the low- 
frequency signal (the alternative hypothesis, Hia), the frequency was changed from 
1.5 to 1.7; for the high-frequency signal (the null hypothesis, Hit), the frequency was 
changed from 2.0 to 2.2. Again, the threshold was set to 0 for all three classifiers. 
The results of this simulation are shown in Table 5.5 below. 

As expected, the simulation values of Pm increased greatly, as the higher fre- 
quency of the low-frequency signal increased the likelihood that the low-frequency 
signal was classified as a high-frequency signal. Conversely, the higher frequency of 
the high-frequency signal reduced the simulation values of Pfa for all three detec- 
tors. As in the first simulation example, the classifier based on the AGT coefficients 
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Statistic 
Error measure 

Pm Pf« 
£1 (GLRT) 0.5116 0.4788 
£2 (M-GLRT) 0.4282 0.1050 
£3 (AGT) 0.2608 0.0230 

Table 5.5: Monte Carlo error probabilities (5000 trials) for statistics £1 (GLRT), t2 
(modified GLRT), and £3 (AGT, 3 iterations). The SNR is approximately -9 dB. 
The (£, /) coordinates of the low-frequency signal are (1, 1.7); the coordinates of the 

high-frequency signal are (1, 2.2). 

far outperformed the other two classifiers, an impressive result considering that the 
signals used for this second simulation example were frequency mismatched with the 
oversampled Gabor logons upon which all three classifiers were based. 

In the third Monte Carlo simulation, the frequency of the high-frequency signal 
was changed from 2.2 to 1.8, making it almost the same as the frequency of the low 
frequency signal. This represents a much more difficult classification problem than 
either of the two examples above. The results of the Monte Carlo simulation for this 
problem, again using a threshold of 0 for all three classifiers, are shown in Table 5.6 

below. 

Statistic 
Error measure 
Pm Pfa 

£1 (GLRT) 0.5116 0.4882 
£2 (M-GLRT) 0.4282 0.4052 
£3 (AGT) 0.2608 0.2558 

Table 5.6: Monte Carlo error probabilities (5000 trials) for statistics £1 (GLRT), £2 
(modified GLRT), and £3 (AGT, 3 iterations). The SNR is approximately -9 dB. 
The (£, /) coordinates of the low-frequency signal are (1, 1.7); the coordinates of the 
high-frequency signal are (1, 1.8). 

Note that the simulation values of Pm in Table 5.6 are the same as the values 
of Pm in Table 5.5, because the same low-frequency signal was used to determine 
Pm. However, with the frequency of the high-frequency signal lowered by 0.2 instead 
of raised by 0.2, the simulation values of P/a increased to levels comparable to the 
simulation values of Pm. However, even with this very difficult classification problem, 
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the AGT-based classifier performs well. 

It should be noted that, given the extremely good localization properties of the 
AGT noted in subsection 5.4.2, the performance of the AGT-based classifier can be 
improved by increasing the oversampling rate in the Gabor logons. For example, 
if the oversampled Gabor logons are separated by 0.1 instead of by 0.5, the AGT- 
based classifier would perform as well in the third simulation example above as in 
the first. Similarly increasing the oversampling rate for the modified-GLRT classifier 
(based on the transform-whitened OS-LSM-GT) would not be as effective because 
of the component blurring associated with transform whitening. One could propose 

to use the OS-LSM-GT directly with a = ß = 0.1 for the third simulation example 
above, but the instability of the OS-LSM-GT would be very evident if there were any 
mismatch. As revealed in subsection 5.4.2, the AGT does not suffer from instability 
in the presence of information mismatch, so increasing the oversampling rate will 
improve classifier performance without any harmful countereffects except that the 
computational load will be greater. 

5.5.3     Optimal detector-classifier combination 

The results of the Monte Carlo simulation in the previous subsection show that 
the AGT is clearly a superior means of signal classification. As noted previously, 
however, the AGT is not appropriate for use in signal detection problems, as the AGT 
coefficients do not distinguish "signal plus noise" from "noise alone" particularly well. 
This problem is not significant when the signal components have known locations in 
the time-frequency plane; in the KL case, the AGT can be used - likely with excellent 
results - in the same manner as any of the non-iterative methods of Chapter 3 were 
used, by focusing on the AGT coefficients at the known signal-component locations. 

When the signal components have unknown locations, however, it is more impor- 
tant for a transform to distribute the energy of its coefficients when there is noise 
alone, and this is where the AGT falls short. Thus, the non-iterative methods of 
Chapter 3 are more appropriate in the UL case. The optimum detector-classifier 
combination in the UL case, then, would involve the following: 

1. Use the UL detector of Chapter 3 to determine whether any signal is present. 
The threshold for this detection test should be set according to a Neyman- 
Pearson criterion, limiting Pfa. 

2. If hypothesis Hi is chosen in Step 1, use the AGT-based classifier to determine 
what type of signal has been detected. The threshold for this test should be set 
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so that the error probabilities for either classification hypothesis are the same. 

3. Denoting the latter error probability for the classification problem as Pe, the 
overall error probabilities are given by 1 — Pj. if the signal is absent and by 

(Pfa) + (Pd){Pe) if a signal is present. 

5.6     Conclusions 

The chapter examined the problem of transient signal classification. The classifica- 
tion problem was defined within the PF framework as one in which the goal is to 
distinguish a low-frequency signal from a high-frequency signal. The GLRT statis- 
tic was derived for this classification problem, and it was found to be essentially 
useless. A modified form of the GLRT statistic, based on the transform-whitened 
OS-LSM-GT, was then proposed, and the modified-GLRT statistic was found to be 
more suitable to the classification problem (though not overwhelmingly so) than the 
statistic based on the GLRT alone. 

Attention was then focused on the adaptive Gabor transform (AGT), which is 
based on the principles of matching pursuit. Using the performance measures and 
sample signals of Chapter 4, the performance of the AGT was found to be far superior 
to any of the non-iterative methods examined in that chapter in terms of represent- 
ing the time-frequency content of signals with accuracy, localization, and coefficient 
stability. This superiority in the AGT was confirmed in Monte Carlo simulations, 
where the AGT-based classifier was found to be far superior to either of the two 
classifiers based on non-iterative transforms. It should be noted that the classifica- 
tion problem emphasizes the favorable properties of the AGT much more than the 
detection problem, as accuracy and localization of signal components is of primary 
importance. However, the AGT is not as suitable for the detection problem, where 
accuracy and localization of signal components in the transform is not as impor- 
tant as the ability to distinguish the transform representation of "signal plus noise" 
from the transform representation of "noise alone." Thus, a combination detector- 
classifier was proposed consisting of the unknown location (UL) detector based on 
the transform-whitened OS-LSM-GT proposed in the latter half of Chapter 3 and of 
the AGT-based classifier examined in this chapter. 

Further research motivated by the work of this chapter should clearly focus on 
additional examination of the AGT. The effectiveness of the AGT in transient signal 
classification problems was only demonstrated in this chapter, not examined thor- 
oughly. For example, it would be interesting to determine the optimal number of 
iterations that should be performed in the AGT for different classification problems. 
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It would also be interesting (though very difficult) to derive the statistical properties 
of the AGT coefficients in analytical form. Until this is done, the performance of 
the AGT can only be evaluated through simulations such as the Monte Carlo sim- 
ulations used in this chapter. Also, although the AGT is not suitable for transient 
signal detection when component locations are unknown, it would be interesting to 
compare the performance of an AGT-based detector with the performance of the five 
detectors of Chapter 3 in the case where signal components are known; again, this 
type of comparison would entail numerical simulations such as Monte Carlo simula- 
tions, as the statistics of the AGT-based detector are not (at present) readily derived 

in analytical form. 

Finally, the work of this chapter could be extended to the multiple-hypothesis 
case, where one desires to classify the signal among several frequency subbands in- 
stead of simply low-frequency and high-frequency subbands. It is likely that an 
AGT-based classifier would provide superior performance in the multiple-hypothesis 
case, for the same reasons that an AGT-based classifier provides superior perfor- 
mance in the two-hypothesis case. 



Chapter 6 

Summary and Future Work 

This dissertation examined the use of linear time-frequency representations - in 
particular, the Gabor transform and the short-time Fourier transform - for a certain 
class of transient signal detection and transient signal classification problems. The 
main conclusions of this study are detailed below, along with some suggestions for 
future work. Because ideas for future work were already discussed in the conclusion 
sections of Chapters 3-5, the discussion on future work here will focus on extending 
the results of this dissertation that involve the Gabor transform and the STFT to 
applications involving the third widely-used linear TFR, the wavelet transform. 

Chapter 3 investigated the use of the oversampled Gabor transform in transient 
signal detection problems, using a model developed by Porat and Friedlander (the 
PF framework). The first part of the chapter focused on the case where the locations 
(in the time-frequency plane) of the signal components to be detected were assumed 
to be known. GLRT detectors based on the oversampled Gabor transform and 
on four critically sampled linear TFRs were compared, and it was found that the 
GLRT detector based on the oversampled Gabor transform was the most robust of 
all the detectors in the presence of every type of information mismatch (including 
frequency mismatch, arrival-time mismatch, and shape mismatch). The second part 
of the chapter focused on the case where signal component locations are assumed 
u7iknown. The GLRT detector based on the oversampled, least-squares method 
Gabor transform (OS-LSM-GT) for the "unknown location" (UL) case was derived, 
and it was compared to the corresponding GLRT detector based on the OS-LSM-GT 
for the "known location" (KL) case. It was found that the UL detector performed 
better than the KL detector unless the signal component locations were known to 
within adjacent coordinates on the oversampled Gabor lattice. 

Friedlander and Porat in [FP92] investigated the use of the wavelet transform 
(WT) for transient signal detection within their framework. In this study, the signal 
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subspace matrix G (or G„) was not comprised of Gabor logons (time-shifted and 
frequency-modulated versions of a basic function) but of wavelet "basis" functions 
(time-shifted and time-scaled versions of a basic function). The typical WT basis 
function was represented as 

gmn[k} = gmn(kA) = w(2mkA -n),   k = 0,1,.., L-l, (6.1) 

with 77i (the scale variable) allowed to range from 0 to M—1 and n (the time variable) 
allowed to range from 0 to N — 1. The function w[k] represents the analyzing wavelet 
of the wavelet transform. Assuming then that the signal to be detected was a linear 
combination of wavelet functions of the form given in (6.1), Friedlander and Porat 
examined the performance of WT-based detectors in much the same way that they 
examined the performance of GT-based and STFT-based detectors in [PF92]. (Recall 
that the wavelet transform coefficients are calculated as inner products between 
the signal and the wavelet basis functions in (6.1). Thus, the transform matrix 
R corresponding to the WT is simply the transpose of the signal subspace matrix 
formed using the functions (6.1) above.) 

In [FP92], Friedlander and Porat investigated two types of analyzing wavelets, 
one based on the Daubechies orthonormal wavelet [Dau88] and another based on a 
slight variation of the one-sided exponential window function examined in Chapter 3. 
However, these two functions certainly do not represent all the analyzing wavelets 
that could be studied. For example, one frequently studied analyzing wavelet is the 
two-sided Gaussian window, given by 

gmn(t) = ^.e-<t-nf+j2^t-n) (6 2) 

V   7T 

Ironically, this was the original window function proposed by Gabor in [Gab46] while 
discussing the transform that now bears his name. In fact, the two-sided Gaussian 
window is often termed the "Gabor wavelet." A typical Gabor wavelet is plotted in 
Figure 6.1. Although the Gabor wavelet does not have the abrupt onset and gradual 
decay typical of the shapes of many transient signals, it has been proposed as a model 
for certain types of transient phenomena in medical signal processing [Tut88, Tut89]. 
Thus, the performance of the Gabor wavelet within the PF framework merits further 
study. The simplicity and flexibility of the PF framework would allow such analysis 
to be conducted without too much variation from the analysis of Chapter 3. 

Chapter 4 examined several methods of improving the major weakness of the 
oversampled least-squares-method Gabor transform, its lack of coefficient stability 
(i.e., the large variation in coefficient magnitudes with small changes in the signal 
or different realizations of noise).   The first part of the chapter examined several 
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Figure 6.1: Two-sided Gaussian window gmn(t), with m = 1, n = 0. 

methods for improving the coefficient stability of the OS-LSM-GT within the PF 
framework, including the widely used methods of rank reduction and regularization. 
Through examples and through a systematic performance analysis of some simple 
cases, it was found that none of these methods provided accurate, localized, and 
stable representations of the time-frequency content of the sample signals simul- 
taneously. The transform-whitened OS-LSM-GT did prove to be stable, accurate 
(in terms of time-frequency representation), and fairly localized, but it had a high 
reconstruction error. 

The second part of Chapter 4 examined the calculation of the oversampled Ga- 
bor transform within another framework that has been used a great deal in recent 
research, the Wexler-Raz (WR) framework. In the WR framework, the oversam- 
pled Gabor transform coefficients are found as the solution of an underdetermined 
system of equations. Thus, there are an infinite number of exact solutions, and 
four methods of selecting solutions were investigated in Chapter 4. With all four of 
the solution methods within the WR framework, it was found that the oversampled 
Gabor transform coefficients provided accurate, stable, and fairly localized time- 
frequency representations for signals without noise; however, the TFRs became very 
hard to interpret (i.e., dispersed instead of localized) when noise was added to the 
signals. The latter observation, along with a significant increase in the computational 
complexity of the oversampled Gabor transform within the WR framework over the 
corresponding computational complexity of the oversampled Gabor transform within 
the PF framework, prevents the effective use of the WR-framework version of the 
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oversampled Gabor transform in transient signal detection problems. 

One adaptive method of improving the coefficient stability of the OS-LSM-GT in 
the presence of arrival-time mismatch involves the wavelet transform. The wavelet 
transform with the Haar basis [MCW93] can be used as a preprocessing tool to de- 
termine the arrival times of transient signal components having sharp onsets, such as 
those examined throughout this dissertation with one-sided exponential windows. In 
this procedure, the WT coefficients at the finest scale reveal the component arrival 
times very accurately, due to the discontinuities in the Haar functions. Once the 
component arrival times are determined, the Gabor logons can be adjusted accord- 
ingly (the Haar functions cannot be used directly, as they are rectangular functions 
that do not resemble the one-sided exponential window), so that there is no longer 
any arrival-time mismatch. This procedure, while it merits further investigation, 
does not change the inherent instability in the OS-LSM-GT, which still becomes 
apparent - even with no arrival-time mismatch - when noise is added to the signal. 

Oversampling is hard to define for the wavelet transform, as the WT by definition 
has better time resolution at higher frequencies and better frequency resolution at 
lower frequencies. However, it is well known that the WT does suffer from coefficient 
instability in the presence of arrival-time mismatch [BE93]. Some research has been 
done in this area, but the topic is largely unexplored. 

Chapter 5 investigated the use of the oversampled Gabor transform for tran- 
sient signal classification problems defined within the PF framework. The specific 
classification problem was to distinguish high frequency signals from low frequency 
signals, once it was established that a signal of some kind was present. It was found 
for this specific problem that the GLRT statistic is essentially useless. A modified 
GLRT statistic based on the transform-whitened OS-LSM-GT was found to provide 
better - but not overwhelmingly superior - classification performance. Finally, the 
adaptive Gabor transform (AGT), based on the principles of matching pursuit, was 
defined, and a classifier based on the AGT was found to provide substantially better 
classification performance than either of the GLRT-based statistics. 

The principles of matching pursuit were originally proposed by Mallat and Zhang 
[MZ92, MZ93] for use with the wavelet transform. Instead of Gabor logons, they 
defined a "dictionary" of time-frequency atoms for which to calculate the matching 
pursuit (MP) coefficients. The atoms were functions defined as 

W,a(*) = -^( —)ßimf' (6-3) y/a        a 

time-shifted, time-scaled, frequency-modulated versions of the window function g{t). 
Note that the atoms of (6.3) simplify to the form of the (critically sampled) Gabor 
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logons when a = 1. The window function g(t) was taken to be the two-sided Gaussian 
window (the Gabor wavelet) defined above. The main reason for this choice of g(t) 
is that the Gaussian window provides the best joint time-frequency localization of 
any function [HBB92, Coh89, MZ92]. Thus, if nothing is known about the shapes 
of the signal components, then the two-sided Gaussian window is the best choice for 

While none of the original papers that proposed matching pursuit algorithms 
([MZ92, MZ93, QC94b, QCC92]) investigated the use of such algorithms within the 
context of transient signal detection and classification, Frisch and Messer [FM91, 
FM92] examined transient signal detection using a related method. This latter 
method used the maximum wavelet transform coefficient as the detection statis- 
tic, which is equivalent to using the MP coefficients after one iteration. Through 
the use of Monte Carlo simulations, Frisch and Messer were able to demonstrate 
that their statistic provided better detection performance than the energy detec- 
tor for their problem. As stated in the concluding section of Chapter 5, there are 
many interesting questions to be answered regarding the use of matching pursuit 
algorithms - with either Gabor logons or the more general time-frequency atoms of 
Mallat and Zhang - for transient signal detection and classification. One question 
of interest that was not mentioned in Chapter 5 is whether the two-sided Gaussian 
window truly provides the best performance (detection or classification) for matching 
pursuit algorithms when nothing is known about the waveform shapes of the signal 
components. A systematic study of this type has yet to be conducted. 

In summary, this dissertation demonstrated that linear TFRs in general and the 
oversampled Gabor transform in particular are effective tools - when used with care 
- for transient signal detection and classification. 
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